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Preface

Due to the highly theoretical nature of the problem, this work does not deal

with the practical application of mixed H2/H. theory at all. I have enjoyed

performing the analytical research, and I trust the reader will be able to see

thr3ugh the theory to the possible future applications of this particular discipline.

I am convinced that as the mixed H2/Ho theory becomes more mature, it will

provide large breakthroughs in the controls community and find its way into all

kinds of applications. Since I have been able to contribute even a small part

toward this end, this research has been as fulfilling as it has been trying.

We, as engineers, spend all our energies trying to find some manageable

model of the phenomena we observe in nature with the hopes of being able to

design something useful. The more I study the sciences (and in this research

project in particular) the more impressed I am with the awesome complexity of

the natural world in which we live. Even some of the most elementary things

still remain a mystery to us. Since I have been able to pull back the veil and

reveal a tiny piece of new information, I feel that this thesis is more than just a

technical work that will sit on some shelf. It is another chapter in the unfolding

testimony of the marvelous God who conceived all of this and brought it into

being.

There have been several people who have been crucial, without whom this

thesis would not have been possible. First is my thesis advisor, Capt Ridgely.
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I would like to thank him for his guidance, patience, and technical expertise.

This is really his inspiration, and I am glad I was able to share in it. He devoted

more time to his thesis students, just to get us up to speed, than any student

could possibly ask. Next, I extend my sincere thanks to my committee members,

Maj Mracek and Dr Liebst. Maj Mracek's knowledge of the problem, numerics,

and the computer code is was what got me going--and then kept me going. His

personal interest in my work is greatly appreciated. Dr Liebst sacrificed many

hours and provided a fresh new look at the problem at a point when it looked like

all avenues had been exhausted.

Finally, I would like to thank the one who sacrificed more for this thesis than

anyone, my wife Sherry. It's one thing for a man to have a wife, but it's a

whole other thing for him to have a helpmate and friend. I appreciate her

strength and love more than I can possibly say. I look forward to being able to

make up lost time with her and my special little boy, Ben.

Scott R. Wells
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Notation

R field of real numbers

Rnxm  set of nxm matrices with elements in R

xT, AT vector/matrix transpose

A complex conjugate transpose of A

A > 0 (< 0) A is positive (negative) definite

A > 0 (< 0) A is positive (negptive) semidefinite

vJA matrix square root if A

Xi(A) eigenvalues of A

ai(A singular values of A

n
tr(A) trace of A = E aii

i--I

Im(A) image of A -{y Fm  I y = Ax for some x E F'}

RH 2  space of all real-rational, strictly proper, stable transfer
matrices (or vector signals)

RHOO space of all real-rational, proper, stable transfer matrices

112 vector or matrix norm on L2

I1 1[ ramtrix norm on L.,

I[G(s),3y] entropy (at infinity) of G(s) at -'
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FA
transfer function matrix notation - C(sI-A)'IB + D

Lc

G*(s) complex conjugate transpose of G(s) = GT(-s)

Ric(M) Riccati operator on Hamiltonian matrix M

inf infimum

lim limit

In natural logarithm

a = b a identically equal to b, a defined as b

{ A I B} set of all A such that B

ARE Agebraic Riccati Equation

DFP Davidon-Fletcher-Powell

LFT Linear Fractional Transformation

LQG Linear Quadratic Gaussian

LQG/LTR Linear Quadratic Gaussian with Loop Transfer Recovery

MIMO Multi-Input, Multi-Output

SISO Singie-Input, Single-Output

E element of

3 there exists

V for all

U end of proof

s Laplace variable
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frequency variable

-, value of the oo-norm

Y0  inf IITedII.
K adm

It2 Ted II when K(s) = K2opt

Y Ted 11 when K(s) = Kmix

U value of the 2-norm

ao inf IITzwll 2
K adm

of Tzw II 2 when K(s) = Kmix

1A real number E [0,1]

inf
K adm infimize over the set of admissible compensators K

performance index

performance index at a given A

Lagrangian

Lagrangian at a given I

K2opt unique K(s) that gives 11 Tw II 2 = cf.

Kmix a K(s) that solves the mixed H2/H,. problem at some -y

n order of the plant

n¢ order of the compensator

n* optimal order of Kmix
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Abstract 
r "

> The problem of minimizing the 2-norm of one tranter function subject to an

,.. ...- norm bound on another transfer function is e mined for increased order

controllers. In particular, the theoretical resulis of the full order case are

extended to the higher order case, and SISO An/MIMO numerical examples areS/ /

given for increasingly higher order compesatrs. Some of the key proofs for

higher order compensators include: the oba minimum 2-norm is unachievable

under output feedback for certain leve of regardless of c6 nsator order;

the solution to the mixed H2/H pro lem lies on the boundary of the -norm

constraint for this same range of 's; and the suboptimal mixed problem

converges to the optimal in the limit for higher order controllers. Also, it is

shown that the optimal compensator order for the mixed H2/H problem is

greater than the order of the plant under certain conditions, and a conjecture

about the optimal order for the mixed problem is made.
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INVESTIGATION OF THE EFFECTS OF
INCREASED ORDER COMPENSATORS IN

MIXED H2/H 0 OPTIMIZATION

I. Introduction

1.1 Background

Optimal control theory provides powerful tools for designing feedback

controllers, particularly when the dynamic system being controlled is very

complex. Classical methods such as root locus become too cumbersome or

completely unusable for high order, multiple-input multiple-output systems, while

optimization techniques can offer a mathematical structure that readily handles

these complicated systems. In an optimal control synthesis problem, a controller

that will minimize some prescribed cost objective (sometimes with additional

constraints) is sought. Extreme care must be taken when defining this cost

function because any controller, including one that results in unacceptable time

responses (or even an unstable closed-loop system), can be shown to be optimal

to some cost function. Obviously, the key in optimal control is defining the

"right" cost objective. Two performance measures which are currently receiving
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a great deal of attention in the controls community are the H 2 and Ho, norms.

These norms are defined by

-I~o l -- 00 tr [G * Ow) Gjo)]l dw I

IGoiw)I221 -Gow) _ sup -O [Gtow)]

( - - max singularvalue) [Dai90]

Both of these performance measures are well motivated and have significant

merit. By themselves, however, each produce controllers that have potentially

undesirable characteristics. This has led to the development of the mixed H2/H.

optimization problem.

While it is beyond the scope of this work to review the vast amount of

literature on H2 and H,. theory, some of the key ideas need to be summarized

in order to properly motivate the mixed problem. Consider the general feedback

control system shown in Figure 1-1. P is the generalized linear, time-invariant

plant transfer function and contains all the weighting functions required to obtain

this general form. The exogenous and controlled input vectors are w and u,

respectively. z and y are the controlled and measured output vectors,

respectively. Denote the closed-loop transfer function from w to z as Tzw.

1-2



w z

U y

Figure 1-1. H 2 Feedback Control System Block Diagram

If w is assumed to be white Gaussian noise and certain assumptions are made on

the plant, the H2 optimization problem can be formulated and solved. The cost

function here is the 2-norm of the closed-loop transfer function Tzw. The only

compensators that are considered "admissible" in the optimization are those that

are real-rational, proper, and internally stabilizing. The problem, stated more

formally, is: infimize the 2-norm of Tw over the set of all admissible

compensators, or find the K that achieves

inf 11 Tzw 112 = e

K adm

Note from the definition of the 2-norm that, given a unit intensity white noise

input, (by Parseval's theorem) the square of 11 Tzw 11 2 is equal to the energy of the

output signal. The H2 optimal controller is the one that results in the minimum
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energy of the controlled output z due to the input w. This is very desirable from

a performance point of view for white noise input applications.

It can be shown [Rid9la,206-216] that H2 optimization, under the assumption

of output feedback, is equivalent to a corresponding Linear Quadratic Gaussian

(LQG) problem. That is, the compensator that minimizes the LQG cost function

j = o "J(XTQX + UTRu + XTNu) dt

is an H2 optimal compensator. Both problems involve the solution of two Riccati

equations and produce a unique controller whose order is equal to the order of

the plant (full order). It is well known that while Linear Quadratic Regulators

(LQR) and Estimators (LQE) generate systems with guaranteed minimum gain and

phase margins, LQG compensators do not exhibit this same quality. In fact, it

is possible for an LQG system to have gain and phase margins that are arbitrarily

small [Doy78,756-757]. So, while the H2 optimal controller has desirable

performance characteristics, it does not provide any guarantees on system

robustness.

It is possible in the LQG problem to recover to some degree the guaranteed

margins of the LQR/LQE systems by using a technique called Loop Transfer

Recovery (LTR). In LTR, the stability margins are recovered by trading off

regulator or estimator performance (depending on where the model uncertainties

are entering the system). In LQG/LTR the designer must decide where to break
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the loop (at the input of the plant or at the output) when defining measures of

performance and stability margins. Unfortunately, it is not possible to define

performance at one location and stability margins at another [RB86,9.1-9.8]. So,

while LQG/LTR is an effective design method for certain cases, it cannot handle

the most general case.

Consider now the problem of H, optimization. The generalized block

diagram is shown in Figure 1-2.

d No Pe

U y

K

Figure 1-2. H. Feedback Control System Block Diagram

The exogenous input is defined to be the vector d, which is assumed to be a

bounded energy input. The controlled output vector is denoted by e. The

problem set-up is exactly the same as before, except now it is the cc-norm of the

closed-loop transfer function Ted that is being minimized; that is find a K which

achieves

inf II TedIl -o

K adm
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The true solution to this optimization problem is usually avoided, and there are

several reasons why. First, the H, design algorithms are necessarily iterative,

and achieving the exact optimal value is very difficult. Also, H, optimal

controllers tend to have some undesirable characteristics. They are typically

infinite bandwidth compensators which produce all-pass closed-loop maximum

singular value plots [ZDGB90, 2502-2503]. Thus, the true H., optimal solution

is not only difficult to calculate, but it may be impractical for a real system. The

more practical solution is the Ha, suboptimal controller, which is the

compensator that insures

IlTed I < 'Y, where -' > -y.

Both the suboptimal and optimal compensators are, in general, non-unique.

There are an infinite number of controllers that achieve a given level of H,

performance.

One of the key advantages of the co-norm is its direct link to system

robustness. This is possible because the co-norm has the submultiplicative

property. That is, for some F,G E RL ,, where RL, is the Banach space of

all real-rational proper stable transfer matrices,

HFG - F uG [Zam66]
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Note that the 2-norm does not have this property. To see the application of this

property, consider the uncertainty block diagram shown in Figure 1-3. Ted is the

nominal closed-loop transfer function, and A is a perturbation function that

characterizes the system's uncertainty.

d e
Ted

Figure 1-3. Uncertainty Block Diagram

The Small Gain Theorem gives a relationship that describes how large A can be

before the nominal system becomes unstable.

Small Gain Theorem: Assume Ted(s), A(s) E RH,,.

If 11 Ted(S) A(S) II < 1

then the closed-loop system (with A) is stable [Zam66]

Then, by the submultiplicative property of the o,-norm,

IITed(S) A(s)II II Ted(S) II II A(s) II < 1
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Thus, to ensure system stability,

IIA(s)1 00  < 1
II Ted II

The smaller II Ted , is, the more uncertainty the system can handle. Due to the

submultiplicative property of the ca-norm, H. optimization seems like an

obvious choice for designing a system for stability robustness.

As can be seen, two reasonable choices for the cost objective in the

optimization problem are the 2-norm and oo-norm of the closed-loop transfer

functions. The 2-norm is desirable because it results in optimal (in the energy

sense) performance in the face of white noises. The oo-norm is desirable because

it guarantees a level of robustness to plant uncertainties. What would be most

desirable would be a methodology that incorporates both. This is what has been

termed the mixed H2/H 0 optimization problem. Consider now the general form

of the feedback control system for the mixed problem as shown in Figure 1-4.

- e
d 00
w -- z

U yK I. Y

Figure 1-4. Mixed H2/H 0 System Block Diagram
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The exogenous input d is assumed to be a deterministic signal of unknown but

bounded energy. The input w is assumed to be a zero-mean white Gaussian noise

of unit intensity. The signals e and z are controlled outputs, and may be equal,

dependent, or independent. The signals u and y are the control inputs and

measured outputs, respectively. All weighting functions required to obtain this

general form are included in the generalized plant transfer function P. Denote

the closed-loop transfer functions from w to z and from d to e as Tw and Ted,

respectively. Stated formally, the general mixed H2 /H* synthesis problem is to

find an admissible controller K(s) that achieves

inf 1 T, subject to the constraint Ij Ted II -Y

K adm

As will be shown later, in the region of interest IITzwl 2 and 11 Ted I are

competing objectives. This makes sense physically since it is expected that some

performance should have to be sacrificed in order to gain robustness (and vice

versa). The mixed H 2/H., problem provides the needed structure for the

designer to explicitly observe and influence this trade-off. An interesting note

is that if the problem is set up such that d = w and e = z, the closed-loop

transfer functions Ted and Tzw are equal. The problem is then essentially

equivalent to LQG/LTR, and the recovery of the stability margins is seen directly

in the trade-off between the 2-norm and co-norm. The nice thing about the

1-9



H2 /H,* approach is that the input and output signals can be defined in any way

the designer chooses, so the limitations of LQG/LTR are not present and the

problem remains completely general.

The value of designing optimal controllers with mixed H2 and H,

performance objectives has been recognized for some time, but the solution to the

most general problem had not been demonstrated until recently by Ridgely in

[Rid9la]. Due to the complexity of the problem, his solution requires numerical

techniques. In fact, it is generally believed that the problem may not have an

explicit analytical solution.

Ridgely was not the first to examine the mixed H2/H. problem; several

earlier papers appeared starting in 1989. The early works by Bernstein &

Haddad ([BH89]); Zhou, Doyle, Glover & Bodenheimer ([ZDGB90]); Yeh, Banda

& Chang ([YBC90]); Mustafa & Glover ([MG90]); and Khargonekar & Rotea

([KR91]) laid the foundations for the general mixed problem, but made varying

assumptions that specialized the more general problem. In addition, they did not

minimize the actual 2-norm but rather an upper bound to it. It was not until

Rotea & Khargonekar's work ([RK91]) that a special case of the true

nonconservative problem was solved. They allowed two sets of inputs and

outputs and did not use an upper bound to the 2-norm; however, they did restrict

their solution to the case of full state availability for feedback. Finally,

Ridgely's work offered the first solutions to the general nonconservative problem.

He used a Lagrange multiplier technique and dcrived the set of necessary
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conditions for the output feedback case. He also proved some key properties for

full order compensators and performed an exhaustive analysis of a SISO and

MIMO example, providing valuable insight into the nature of the problem.

While the bulk of Ridgely's work was done with full order controllers, he did

take a cursory look at higher order compensators. He found, by example, a

higher order controller that satisfied the necessary conditions and produced a

2-norm lower than the corresponding full order compensator. It is obvious from

this example and other analysis that the optimal order of the mixed compensator

(that is, the lowest order compensator with a minimal realization that achieves

the true optimal mixed solution 2-norm) is not the order of the plant. However,

the ultimate issue of optimal order was not determined.

1.2 Research Objectives

The work contained here is an extension of Ridgely's dissertation. His

solution methodology was used and was applied specifically to compensators

whos order is higher than the plant. The main objective of the research was to

use the example systems defined in Ridgely's dissertation and numerically solve

the mixed H2/H0. for increasingly greater order controllers. An investigation of

what these results say about the nature of the problem and what the optimal order

might be was then performed. Obviously, these numerical solutions cannot

directly prove optimal order in general, but the investigation could shed new light

on this difficult subject. In addition to running numerical examples, another
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objective was to extend some of the analytical proofs for the full order case to

the higher order case. Finally, while it was not expected to be able to formally

prove the optimal order of the mixed H2/H. problem, this question motivated all

the research, and the proof (or at least a strong conjecture) was always an

underlying objective.

1.3 Thesis Outline

This thesis is comprised of six chapters. Chapter I provides the background

for this work and outlines the research accomplished. The motivation for doing

mixed H2/H. optimization is presented. Also, a brief history of the problem

development is given.

Chapter II gives motivations for investigating higher order compensators and

takes an introductory look at the question of optimal order. Some of the

problems with determining optimal order are discussed. Then, the optimal orders

of related optimization problems are reviewed. Specifically, the optimal orders

of compensators in the pure H2, H,., and minimum entropy problems are shown.

Chapter III then begins the formal development of the mixed problem. After

defining the problem statement, first-order necessary conditions for the general

and suboptimal mixed problems are derived. Then a brief review of the full

order analytical results is given.

Chapter IV contains all the analytical proofs that extend the full order results

to higher order compensators. The true optimal mixed problem is the main focus
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of theory presented here; however, the suboptimal mixed problem is also briefly

discussed.

Chapter V is the section that contains all the numerical results of the

research. First, the algorithm used to numerically solve the set of necessary

conditions is discussed. Then, a SISO and MIMO example are given along with

discussions of their results.

Finally, Chapter VI concludes the work with a formal conjecture of optimal

order supported by both analytical and numerical evidence. Recommendations

for future research are offered and a summary is given. The FORTRAN source

code of the numerical algorithm discussed in Chapter V is included as an

appendix.
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II. Higher Order Compensators and
Optimal Order

2.1 General Discussion

Why even consider higher order compensators? From a practical point of

view, it is unlikely that a higher order controller would ever be implemented on

a real system, especially if the plant has any significant size at all. For example,

consider a typical aerospace application, aircraft pitch attitude control. The

nominal plant from the linearized perturbation equations is fourth order. After

adding in all the weights for the input and output signals, the general system

plant could easily double. Now, the full order controller must be 8th order.

This is already becoming unreasonable from a real-life application point of view.

Now, say that the optimal order of a controller for some optimization problem

is three times the order of the plant. This would be a 24th order controller. If

it is even possible to build such a compensator, it would undoubtedly be

prohibitively expensive. It seems the more useful area of interest for practical

applications would be reduced order controllers. So again, why consider higher

order compensators?

There are at least two very good reasons to examine higher order

compensators. The first reason is more philosophical than practical. What is the

optimal order of the compensator for the mixed H2/H . control problem? It has

2-1



already been shown that it is something greater than the order of the plant, in

general. Therefore, if the question of optimal order is to be addressed (which

it must be--purely for the sake of fully developing H2/H,. theory), the higher

order case must be examined.

The second reason is more practical. The design process is really an art of

compromise. The engineer strives to design a system that will meet some set of

specifications without over-exceeding the specifications. Why design a system

that can handle ten-fold variations in the system parameters when three-fold

variations are all that are actually expected? The main reason, besides cost, for

not overdesigning a system is that specifications are almost always competing.

For example, performance and robustness levels are two specifications that a

control system would have to satisfy. Unfortunately, in order to get one, there

usually will have to be sacrifices made in the other. In order for an engineer to

properly make these trade-offs, he needs to know the limits for the problem, such

as the maximum level of performance and the maximum level of robustness that

can be achieved by any controller. With these parameters in hand, the engineer

can then back off on both ends until a compromise is found that will satisfy both

specifications (or determine that the problem has been overspecified). Thus,

even if the optimal order of the mixed problem turns out to be infinite (which

could never be implemented on a real system), this infinite order compensator

represents the limit of achievable performance for a given level of robustness and

is important to know. Even more important is the trade-off of performance
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versus compensator order from full order to the optimal order. This would give

the designer the ability to explicitly see what advantages can be gained and how

much it will cost to attain them. Therefore, since the optimal order appears to

be greater than the order of the plant, increased order compensators must be

investigated, even for practical design purposes.

Determining the optimal order of a compensator that satisfies some

optimization criterion is not an easy or straightforward task. If the problem can

be posed such that compensator order does not have to specified at the beginning

of the problem, and the solution ends up defining the compensator order, the

optimal order can be determined. However, if a method like Lagrange

multipliers is used, the order of the compensator must be chosen during the set-

up of the problem. This has the advantage of allowing the engineer to specify

the order of the controller in advance (which is particularly helpful in the

reduced order problem), but it completely prevents the determination of optimal

order. If one tries to add compensator order as a constraint, a number of

problems immediately arise. First of all, how does one express order as a

mathematical relationship that can be used in an optimization algorithm? Also,

the sizes of the matrices in the Lagrangian and thus the necessary conditions

change with changes in order. This gives rise to difficulties in deriving

completely general proofs. For example, proofs for full order compensators that

require some matrix to be square and full rank may not be valid for higher order

compensators because these same matrices may not even be square for the higher
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order case. Finally, compensator order is not a convex constraint. The mixed

H2/H. problem has a convex objective function subject to a convex constraint

[Rid9la,27]. However, if compensator order is added as a constraint, the whole

nature of the problem would be changed due to this nonconvex constraint.

Therefore, determining the optimal order must be accomplished by discovering

some clever parameterization of solutions, completely recasting the problem in

some different space, or some form of variational approach.

In order to provide insight into the mixed problem, first consider the optimal

order for the related problems of H 2 , H,,, and entropy minimization. The

discussion that follows is intended to be more heuristic than rigorous -- the

purpose is simply to provide the necessary background of established theory and

to lay the foundation for later discussions of the mixed problem.

2.2 H2 Optimization

This section is divided into two parts. The first part assumes availability of the

full state vector for feedback; the other part assumes output feedback. The

nature of the solutions turns out to be surprisingly different. Both cases begin

with the same system definitions. Consider the H 2 optimization block diagram

given in Figure 2-1.
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w Pz

U y

Figure 2-1. H2 Feedback Control System Block Diagram

Aga

in, the exogenous input w is assumed to be a zero-mean white Gaussian noise of

unit intensity. The vector z is the controlled output. The signals u and y are the

control inputs and measured outputs, respectively. The state space equations for

the generalized transfer matrix P are given by

dx/dt = Ax + Bw +Buu (2. 1a)

z = Czx + DzwW + Dzuu (2. 1b)

y = Cyx + Dy~w + DyuU (2.1c)

The transfer function matrix for the open-loop plant P can be partitioned as

P = [Pyw Py
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The closed-loop transfer function from w to z is given by the LFT

TZW = Pzw + PZU K [I-PyuK] "1 PyW

2.2.1 State Feedback Case. The solution is found through a

parameterization of the set of all admissible unconstrained H2-optimal controllers.

That is, determine the set of all K(s) such that

ITzw(K) 112 - o

Assume the following conditions on the plant P:

(i) Cy = I, Dyw = D = 0 (state feedback)

(ii) (A, Bu) stabilizable

(iii) DZW = 0

T(iv) DZUDzu full rank

AIj BU full column rank for all w E R
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Let K(s) denote an admissible controller. K(s) can be parameterized by J and the

freedom parameter Q as shown in Figure 2-2.

U y

From Theorem 1 of [RK91], the complete parameterization of optimal

controllers, K(s), that minimize 11 112 are given by the linear fractional

transformation of J and Q with

A F  0 B u

0 F I

-I I 0
L

and Q E S, where S M{Q E RHc,: Q = WIIl(sI-AF), W E RH 2}

T -1T T
F - -(DzuDzu ) - (DzUCZ + BU X)
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and where X is the unique stabilizing solution to the ARE:

ST TxT 1 z)T T
ATX + XA - (DZUCZ + Bu X) (DZUDzu)(DzuCz + Bu X) + Cz C z = 0

and

H - I -BUBu+  (where BU+ is the Moore-Penrose
pseudoinverse of BU)

AF = A + BuF

Notice that when Im(Bu) = Rn (or in other words, BuERXm , m>n), this

parameterization reduces to a unique, state-feedback (static gain) controller,

Ko=F. Also, an important result from this parameterization is that when Im(BU)

is a proper subset of Rn (m < n), there is a family of (dynamic) controllers

parameterized by W. Thus, the optimal order under full state availability is zero.

Higher order compensators are part of the set of solutions, but they achieve the

exact same minimum 2-norm as the static compensator. If the unconstrained

problem is the only item of interest, there would be no reason for a designer to

choose a higher-order dynamic controller over the static one. However, there is

extra freedom provided by this family of H2-optimal compensators which can be

exploited to satisfy some additional constraints. This freedom leads to interesting

results in the mixed problem.

Consider briefly the mixed H2/H, problem (still under full state

availability). Rotea & Khargonekar define two problems [RK91,307-308].
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Problem A: The true mixed H2/H., problem -- minimize the H-norm, subject

to an H., constraint. That is, find

of { inf IITzwI 2, subj to ITedl :5 - 'Y}
K adm

Problem B: An H2 super-optimization problem -- determine the unconstrained

H2-optimal controller that also achieves an (added) H, bound. That is, find all

K(s) such that

co. inf tTzw 112);
K adm

and the constraint I Ted II cc - Y is also trivially satisfied.

Note that a solution to Problem B is also a solution to Problem A (but the reverse

is not necessarily true).

Rotea & Khargonekar then provide the necessary and sufficient conditions for

the existence of solutions to Problem B (and thus sufficient conditions for

existence of solutions to Problem A). Also, under certain conditions, existence

of a solution to Problem B is necessary and sufficient for existence of a solution

to Problem A. If a solution to Problem B exists, they show that even though the

full state is available for feedback, the solution may necessarily be dynamic.

This leads them to the conjecture that the optimal order under output feedback

is greater than the order of the plant.
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Another important thing to notice in Problem B is that the global minimum

of 1 Tzw 12 (ao) is. achieved at each level of 11 Ted I - (if the solution exists). As

will be shown, the character of the solution under output feedback is considerably

different.

2.2.2 Output Feedback Case. First, parameterize the set of all admissible

unconstrained H 2-suboptimal controllers. That is, determine the set of all K(s)

such that

11Tzw(K) 112 
- C, C' >- C,

Assume the following conditions on the plant P:

(i) Dzw = 0

(ii) Dyu = 0

(iii) (A,Bu) stabilizable, (Cy,A) detectable

(iv)DuDzu DywDy w  full rank

Without loss of generality, strengthen this so that

T T
DzuDzu = I, DywD =

A-jwl BU  full column rank for all w E R

CZ Dz20
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(vi) B
I A-jwl Bw full row rank for all w E R
L Cy Dyw I

Note that the case of full state availability is not a trivial special case of output

feedback for this development since Dy w = 0 violates assumption (iv) and leads

to a singular control problem.

From [DGKF89], the complete parameterization of all suboptimal admissible

controllers, K(s), that achieve 11 Tzw II 2 - a, CI 0,0, is given by the lower LFT

of J and Q shown in Figure 2-2, where

SAj Kf Kfl

" 0 I
I 0K

Aj = A -KCy - BuK c

T T
Kc = BU X 2 + DzuCz, KC= -Cy

T T

Kf = Y2 Cy + BWDyW,  Kfl Bu

and where X2 and Y2 are the real, unique, symmetric positive semidefinite

solutions to the ARE's:
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T )TX T2 AB C T(A-BuDZuC zX2 + X2(A-BuDTzuC - X2BBTu X2
TT T

+ [(I-DzuDzu)C z] [(I-DzuDzu)Cz] = 0

(A-BwDyTCy)Y 2 + Y2 (A-BwDywCy)T - Y2CT C 2

T T = o+[Bw,(I-DywDyw)][Bw(I-DywDw) =0

and

O e RH 2, 112 <_ ,2 _ U'2

If the H2 optimal compensator is desired (i.e. a = ao), then Q 0, and the

solution is unique and has order equal to the order of the plant. Note that this

is in contrast to the state feedback case, where a family of optimal compensators

exists. If an H2 suboptimal compensator is desired (i.e. ae > a.) in output

feedback, then Q(s) is not equal to zero, and a family of suboptimal compensators

exists. In summary, under the assumption of output feedback, the optimal

compensator is unique and the optimal order is the order of the plant.

Now consider Rotea & Khargonekar's Problem B for the output feedback

case. By definition of the problem, a = oo . Therefore, Q-0 and K(s)--K2opt

(a unique solution). Define the oo-norm of Ted when the H2 optimal compensator

is used as 11Ted(K 2opt) II I - if a -y is chosen such that -y < 72, no solution

to Problem B exists at all. If -' is chosen such that -y - 72, then K(s) is K2opt

(the unconstrained H2-optimal solution). While the family of dynamic H, optimal
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compensators with full state availability provides degrees of freedom that enable

-y to be reduced in Problem B, these results are not attainable in the output

feedback case because the family of H2 optimal compensators includes only one

unique controller. If Problem B has a solution, it is unique with -Y*=3y2.

Otherwise, there is no solution.

2.3 H., Optimization

Consider the H. optimization block diagram given in Figure 2-3.

d Noe

U Y

K

Figure 2-3. H. Feedback Control System Block Diagram

Again, the exogenous input d is assumed to be a deterministic signal of

unknown but bounded energy. The vector e is the controlled output. The signals

u and y are the control inputs and measured outputs, respectively. The state

space equations for the generalized transfer matrix P are given by
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dx/dt =Ax + Bdd +Buu (2. 2a)

e=CeX + Ddd + DeuU (2.2b)

y =Cyx + Dydd + Dyuu (2. 2c)

The transfer function matrix for the open-loop plant P can be partitioned as

[ ed Peu1
I yd P'yuJ

The closed-loop transfer function from d to e is given by the LFT

Ted = "ed + Peu K [LPYUK]-' Pyd

Assume the following conditions on the plant P:

(i) Ded =0

(ii) D =U 0

(iii) (A,Bu) stabilizable, (CY,A) detectable

(iv)u T DydDyd full rank

Without loss of generality, strengthen this so that

T T~D~=
eu CU =1,Ddy=I
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(v)
A-jl Bu full column rank for all w E R

[ACe DeuJ

(vi)
A-jwl Bd / full row rank for all Lo E R
SCy Dyd J

A parameterization of all H, suboptimal compensators will now be given. As

discussed earlier, the H0 O optimal solution is not desired and will not be directly

addressed here. The problem is to find the family of admissible compensators

K(s) such that

II Ted II < Y, where -y > y

From [DGKF89], the complete parameterization of suboptimal H,, controllers is

given by an LFT of J and Q as shown in the block diagram in Figure 2-2 with

Aj Kf Kfl

K 0 I

KcI 1 0
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where

Aj + fy-BK C (Ce - DeuKc)

T T2K= (Bu XO + Deuce) (1 yY-X-)Y1

Kf = Y CT + BdD T

K=(,Y2D BT x~ + Cy) (I _- Y2yOOXCCY'

Kfl = y-2YCTD +
Ce Deu + u

X . and YCO are the solutions to the ARE's

(A - Beue .+ X(A-BuDeuCe) 4.X oo(,Y2BdBd -BuBu )XOO

T T T T -+ Ce (I - DeuDeu) (I - DeuDeu)Ce=0

(ABDdC)O T ~( D BTCY)T + y.,- T C C~"

(A- d dy). .A d ydy' Y(Ce e -C)yO
BdI-T -T T T -

+ d( -DydDyd)(I -DydDyd) Bd

and the freedom parameter Q is given by

Q E RHCO IIQIK < '

There are three conditions that must be met in order for this parameterization

to be valid:

i) Hx E dom (Ric) with X(, = Ric(Hx) t 0

ii) HY E dom(Ric) with Y,, = Ric(HY) ;? 0

iii) p(YOOX.) < -
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where Hx and Hy are the associated Hamiltonian matrices of their respective

Riccati equations, and p(Y=X=) is the spectral radius of the matrix YX0. If

any of these three conditions aru not met, y is too low (that is, it is below -Y0).

This is where the iterative nature of H. optimization is seen. -y0 must be

approached iteratively, and -y can be made to be arbitrarily close to the optimal

value.

Note that the simplest controller in this parameterization is given when Q=0.

This is known as the central H, compensator. In this case, the compensator is

unique and its order is equal to the order of the plant. Other higher order

compensators are in the set of solutions (for nonzero values of Q), but the

maximum order required for this problem is the order of the plant.

Without rigorous development, consider briefly the Ho optimal case. When

^Y gets close to -y., the H. suboptimal controller (at least in a SISO problem) has

a singular value plot that is completely flat from low frequency out to a high

frequency roll-off. In other words, it looks like an all pass filter with a single

high frequency pole. As y approaches -y, this pole moves toward infinity. At

H. optimal (that is, -y = -yo), the pole is at infinity and the controller actually

drops rank [Rid9lb]. Therefore, the optimal order for Ho, optimal compensators

is no greater than full order minus one.

2-17



2.4 Minimum Entropy

The concept of the entropy of a control system is very non-intuitive and is

not directly related to the traditional ideas of thermodynamic randomness. Let

G E RL. and 11 G I < -. The entropy at infinity of G(s) is defined by

l[G(s),-y] r- liin f2- OIn I det[I - 3-2 GIw)*Go)]I dw

Note from examination of this definition that the entropy has the following

properties:

i) I[G(s),y _ 0

ii) I[G(s),,] = 0 iff G(s) - 0

iii) I[G(s),-y] < oo iff G(oo) = 0 [MG90,8-11]

While this definition does not appear to have much practical usefulness in this

form, entropy is a useful quantity and has some interesting relationships to the

2-norm and co-norm. In particular, entropy is an upper bound to the 2-norm and

is equal to 2-norm as -y gets very large. That is, if G E RH 2 and -y is such that

JGH 1. < y, then I[G(s),v] >-- HG(s) 11 and I(G(s),o,] = I1G(s) 112 ([MG90,12],
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Theorem 2.4.4). Also, entropy is relatively easy to compute in state space

despite its formidable definition. Let G E RH 2 , I G II < -y, and

G(s) = C(sI-A)'B. Then

I[G(s),-y] = tr [QCTc]

where Q = QT > 0 is the stabilizing solution to the ARE

0 = AQ + QAT + Y-2QCTCQ + BBT [MG90,52-54] Lemma 5.3.2

Now, consider minimizing the closed-loop entropy of a system. Make all the

same assumptions that were made for the H, suboptimal parameterization and

let -y > -y,. Then, minimizing the closed-loop entropy I[Ted(S),'Y] over the set

of all admissible compensators K(s) such that I1 Ted I* < -y results in the central

H, controller at that y [MG90]. The order of the central H., controller has

already been shown to be no greater than the order of the plant. Therefore, the

minimum entropy problem has an optimal order that is no greater than the order

of the plant.
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Table 2-1 gives a summary of the optimal orders of the compensators that are

solutions to the optimization problems just discussed.

Table 2-1. Optimal Compensator Orders

Optimization Optimal Order of
Problem Compensator

H2 (opt) 0 (full-state feedback)

< n (output feedback)

H,. (sub-opt) < n

H,, (opt) < n-i

I [Ted,'(] __ n

note: n = order of plant
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iI. General Development of the
Mixed H2/H. Problem

3.1 Problem Statement

Consider again the general form of the linear time-invariant feedback control

system for the mixed H2/H,, optimization problem as introduced in Chapter 1,

reproduced in Figure 3-1.

d e
w z

U y

Figure 3-1. Mixed H2/H. , System Block Diagram

The exogenous input d is assumed to be a deterministic signal of unknown but

bounded energy. The input w is assumed to be a zero-mean white Gaussian noise

of unit intensity. The signals e and z are controlled outputs, and may be equal,

dependent, or independent. The signals u and y are the control inputs and

measured outputs, respectively. All weighting functions required to obtain this
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general form are included in the generalized plant transfer function P. The state

space equations for P are given by:

dx/dt =Ax + Bd + Bww +BuU (3. 1a)

e =Cex + Dedd + Deww + DeuU (3.1b)

_Cx + Dd ww + DzuU (3.1c)

y= Cyx + Dydd + Dyw + DyuU (3.1d)

The transfer function matrix for the open-loop plant P can be partitioned as

Ped Pe Pe

P P zd Pzw Pzu

Pyd Pyw Pyu

Closed-loop transfer functions from w to z and from d to e are given by the lower

linear fractional transformations

Tzw =Pzw + PZU K [I-PyuK] "1 Pyw

Ted =Ped + Peu K [I-PyuK] " I Pyd
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Now, assume the plant P satisfies the following conditions:

(i) Dzw =0

(ii) Ded =0

(iii) Dy u =0

(iv) (A,Bu) stabilizable, (CyA) detectable

T T
(v) DzuDzu, DywDy w  full rank

T T(vi) DeuDeu, DydD yd full rank

(vii) [A - j I B  ]u  full column rank for all w E R

(viii) [A-jwI B w  full row rank for all o E R

(ix) [A - j I  Deu full column rank for all w E R

(X) [A-jw Bd ] full row rank for all (A E R

The rationale for these assumptions are:

i) Required for a well-posed H2 problem. If Dw ; 0, the 2-norm of

Tw will be infinite, regardless of K.

ii) Not required for finite oo-norm, but greatly simplifies the

development.
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iii) Not required, but greatly simplifies the development and is

representative of physically realizable plants.

iv) Necessary for the existence of any stabilizing controller.

v) - x) Ensures the pure H 2 and H, optimization problems each have an

admissible solution.

The following definitions will be used throughout:

'YO -- inf ITedllo
K adm

aio  - inf ITzwll2
K adm

K2op, m unique K(s) that gives T,U1 12 = C.

If2 -m 11 Ted 1I o when K(s) = K2.p,

Kmix m a K(s) that solves the mixed H2/H, problem at some -y

'* 11 ]Ted 1, when K(s) = Kmix

o* -= T II2 when K(s) = Kmix

n order of the plant

ne -w order of the compensator

n w optimal order of Kmix
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Before getting too deep into the development of the mixed problem, briefly

survey the big picture. Consider plotting the 2-norm of Tzw versus the oo-norm

of Ted. Figure 3-2 shows a generic plot with some key points identified.

lITZW 112

a 0  -

Yo Y 2 IITeId w

Figure 3-2. Generic H2 versus H,. Plot

This plot serves to illustrate the boundaries of the mixed problem. Note that a.

is the lowest achievable 2-norm by any compensator since it comes from the

unconstrained H2 problem. Likewise 'y0 is the minimum achievable oo-norm.

Therefore, the dashed lines represent limits of achievable H2 and HO.

performance within which the mixed solutions must lie. If y is lowered beyond

70, no solution will exist. Note also that as the H., optimal solution is

approached, the 2-norm becomes infinite. Actually, there are possible cases

where the optimal H. controller has a zero state space D matrix, thus allowing
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a finite 2-norm. These cases are rare and will not be considered, even though

the development to follow would still hold. Finally, as -y is increased to Y2, the

solution becomes the unique H2 unconstrained optimal solution. The solution will

remain the same unique H2 optimal solution if -y is increased further because the

oo-norm constraint is effectively removed.

Now, the general mixed H2/H. optimization synthesis problen. is:

Determine the set of admissible compensators K(s) such that

inf 11 Tw 112, subject to the constraint II Ted II 5 _Y
K adm

is achieved.

First, this problem statement needs to be turned into a mathematical statement

that can be manipulated. Begin with a definition of the compensator. A state

space description of the compensator in Figure 3-1 is

dx,/dt Acxc + By (3.2a)

u =Ccx + Dy (3.2b)

It is easily shown that D. must be zero in order to have a finite Tzw [Rid9la,92],

so the assumption that K(s) is strictly proper is made with no loss of generality.

Using the control law u - K(s)y, form the closed-loop system with the

augmented state vector X - [x1 by combining Equations (3.1) and (3.2).
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The closed-loop system can now be written in state space form as

d.X_ = + Bdd + BwW (3.3a)

e = C e + De,;,w (3.3b)

Z = 
2 zX , Dzdd (3.3c)

where the closed-loop (tilde) matrices are given by

FA BCl
A [BcCy AcJ

Ad = Ew = 1
Bc Dyd B Dyw

Ce = [Ce DeuCeC iz = [Cz DZUCC]

The closed-loop transfer functions from w to z and from d to e can now be

written as

Ted = e (sI - )- Bd

Tzw = (z(s - ) w
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Now that the closed-loop system has been expressed in terms of the unknown

compensator matrices (AC, Be, C,), the cost objective, stability requirement, and

constraint need to be recast as mathematical functions. Begin with the cost

objective and stability requirement. It is a standard result that the 2-norm

squared of a transfer function can be found as a function of the solution to a

Lyapunov equation. Specifically, if

A (which is true with the
s =H2 given assumptions)TZW(S) -- ! [ RH 2

then

2 ET- ZIITz = tr [Q2  z]

where > 0 is the solution to the Lyapunov equation

+ AT + BwBw7 = 0

Note from Lyapunov theory that this symmetric, positive semidefinite solution

only exists when A is stable [Won85,283], so the requirement of finding a

stabilizing compensator will be automatically satisfied if the solution of this

equation is enforced.
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Now consider the oo-norm constraint. It can be shown that an 0o-norm

bound on a transfer function can be guaranteed by requiring the solution to a

Riccati equation. Specifically, for

A Bd
Ted(s) =

IC 
0

and assuming A is stable (which is enforced by the Lyapunov equation), then if

Tthere exists a Q , = QT > 0 that satisfies the algebraic Riccati equation

+ .T+ +Y2~~ t TAQ, + Oc ,A T  2QcTCQ Bd T  0

then

ITedll < Y [Rid9la,55-57] Thm 2.5.17

Finally, the mixed H2/H. problem can now be restated as:

Determine (Ac, Be, Co) that minimizes the cost function
J(AC, Bc, Co) = tr [Q2CT C] (3.4)

where Q2 is the real, symmetric, positive semidefinite solution to

T - T
AQ 2 + 2 , +BwB w  = 0
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and such that (for a given -y)

,Q., + QAT + -y -2Q.c Tc ( +B B3T = 0
e e~ood d

has a real, symmetric, positive semidefinite solution.

Note that the variables in the problem are A., BC, Cc, Q2 , and Q,. All

other matrices are known from the system model, and y is given in the problem

statement.

3.2 First-Order Necessary Conditions for the

General Mixed Problem

In order to derive the necessary conditions for the mixed H2/H. optimization

problem, the method of Lagrange multipliers is used. In this method, a

constrained optimization problem is transformed into an unconstrained problem

by adjoining the constraint equations to the original cost function and forming a

new cost function, called the Lagrangian. The first variations of this Lagrangian

are then set equal to zero to find the necessary conditions for a minimum (second

variations give the sufficient conditions). The constraint equations (which must

be of the form f(x,y,...) = 0) are adjoined by a parameter called th'. Lagrange

multiplier. This Lagrange multiplier is then another variable which must be

solved for. If, during the solution of the problem, it is shown that the Lagrange

multiplier must be zero, it physically means that the constraint is not in effect

and can be removed.
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For this problem, there are two constraint equations to be adjoined. Since

they are matrix equations, the Lagrange multipliers must also be matrices.

Define these two matrices in partitioned form as

X1 X12 YI Y2
X = Y =

12 X2 12 Y2

These matrices do not have to be defined as symmetric. However, they will be

shown to be real symmetric solutions to Lyapunov equations, so for simplicity

they will be defined to be symmetric here (X I, X 2, Y1 , and Y2 are therefore

symmetric).

The Lagrangian can now be formed and the mixed H2/H, Lagrange

multiplier problem can be stated. Assume Q2 = Q2  0 and

QO,= QT >_ 0. Minimize the Lagrangian

-~ -T-

tr[Q 2C C] + tr{[AO 2 + Q2AT + BWBW]X}

+ tr{[A, + Q,AT + e2Q Q + BdBT]Y} (3.5)

Note that if Y = 0, the o,-norm bound is trivially satisfied. That is, the

constraint is inactive. If the solution lies on the boundary of this constraint, then

Y d 0. For the special case y = 72, the solution lies on the boundary and

Y-0.
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Now set the first variations of this function equal to zero. That is, take the

partial derivatives of I with respect to all the variables (AC, Be, Cc, Q2, Qoo,

X, and Y) and set them equal to zero. These are derivatives of scalars with

respect to matrices for which the following formulae apply:

a tr(AXB) = ATBT
ax

a tr(AXTB) =BA
ax

a tr(AXBXC) = ATCTXTBT + BTXTATCT
ax

a tr(AXBXTC) - ATCTXBT + CAXB
ax [AS65]

The derivatives with respect to Q2, Q,., X, and Y are no problem because they

appear explicitly in the Lagrangian in its present form. However, the

compensator matrices Ac, BC, and Cc do not appear explicitly, so the Lagrangian

must be multiplied out and expanded into its constituent sub-blocks. Define the

sub-blocks of Q2 and Q, as (note: these are symmetric matrices)

[Qi Q12 1 Qa Qab1
Q2T iO T~

2 Q12  Q2 Q LQab Qb
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The off-diagonal terms in these partitions are not square unless the order of the

compensator is equal to the order of the plant. In general, the sizes of the

matrices within the partitions of A, Q2, Q,, X, and Y are

n xn In xnc

(n+nc) x (n+nc)

ncx n ncx nc

K L

In addition, to reduce excessive notation, make the following simplifying

definitions:

V a  --- B B T  V 1  B B w B T

a Bd d WB T
T T

Vab BdDyd V 12 = BwDyw

T T
Vb DydDyd V2 - DywDyw

R =CT C R TC
a e e 1 z z

R =CDeu R12  CTDzu

T T
Rb = DeuDeu R2  DZUDZU
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After substituting all the expressions for the closed-loop system, Q2, QII, X, Y,

the compensator, and the simplifying definitions, the expanded Lagrangian is

T T T T
= tr{ QIR 1 + Q12 CT R12 + Q12 R12Cc + Q 2CCR 2 Cc + AQ1 X1

T T T T T T T
+ QIAx + BUCCQ 12XI + Q12Cc Bu X, + VX + AQ 12XT2 + Q12AT X12

TxT + TTT TT

BCQ2x2 + QCYBCX 12 + VI2BAX 2 + BCCyQIX 2

T T T T T T
+ ACQ 12 XI 2 + Q 12ATX 1 2 + Q2 c Bu X12 + BCVT2x,2 + AcQ 2X2

TT T T T"Q 2AT X 2 + BcCyQ 2X2 + Q12Cy Bc X2 + BCV 2BC X2 + AQaY1

Ty cTy T T T T T+ QaA y 1 + BuCcQYI + Qabc BT Y1 + VaYI + AQabYT2 + QabAc Y 12

T T T TT T
BuCcQbY2 + QaCyBCY12 + VabBc Y12 + BcCyQaYI 2 + AcQabY12

" QabATY12 + QbCT BT Y12 + BcVabYl2 + AcQbY 2 + QbAT Y2
T T T T T

BcCyQabY 2 + QabCy B Y2 + BCV 2Bc Y 2 + -12[ QaRaQaY1

TQb~~~~ T T T + T
"-QbCT RabQaY +- QaRabCcQabYl + QabCc RbCcQabYI + QaRaQabY1 2

T T T T T
+ QabCc RabQaby12 + QaRabCcQbyT2 + QabCc RbCcQbyT2

T T T T T
+ QabRaQaYl2 + QbCc RabQaYI2 + QabRabCcQabY12

T T T T T
+ QbCC RbCcQabY12 + QabRaQabY2 + QbCc RabQabY2

T T
+ QabRabCcQbY 2 + QbCC RbCcQbY 2I } (3.6)
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Now, the partial derivatives of the Lagrangian are [Rid9la,97-98]

S x 12Q12 + X2 Q2 + y12Qab + Y2Qb =0 (3.7)

T X 2 QTc + X2BcV 2 + T T

Bc  XQ 1 C + 12 + X V12  Y 2 QaCy

+ T T T (3.8)2 YQab y +12VA + Y2B Vb = 0

-y B_ XIQ 12 + BT X12 Q2 + RTQ12 + R2 CcQ 2 + BTyiQab

" T -2 [RT +RT+ BY12Qb + , - [ RabQaYlQab + RabQaYl2Qb

T T T T [
+ RabQabY2Qab + RabQabY2Qb + RbCcQab YIQab

T T 1 +
RbCcQbYl 2 Qab + RbCcQabYl2Qb + RbCQbY2Qb 1 0

(3.9)

-AQ 2 ( 2 +w = 0 (3.10)

a I = ATX . XA + T z = 0 (3.11)
a Q2  z

a - = AQ. + Q.AT + Y-2 Q a Te C + dfdT = 0 (3.12)

a _[ + y-2 Q U T c]T y + y [k + Y_2Q(tTte] = 0 (3.13)
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These are a set of seven nonlinear, coupled matrix equations for which no

analytical solution has been found. Equations (3.10) and (3. 11) are Lyapunov

equations in Q2 and X, respectively. It is interesting to note that these two

equations show that Q2 and X are the controllability and observability gramians

of Tzw. Equation (3.13) is a Lyapunov equation in Y, but it has no constant

term. Therefore, if the matrix (A + .2Q.CTC) is stable, the only solution

to (3.13) is Y = 0 ([SZ70], Thm 2.1). Now, Equation (3.12) is a Riccati

equation in Qo.. If Q, is chosen to be the stabilizing solution to this Riccati

equation (which is typically the solution that is wanted), the matrix that is

stabilized is (A + Y"2Q.ET Ce). This means that the Lagrange multiplier matrix

Y must be equal to zero, which means that the o-norm constraint is not active

and can effectively be removed.

This apparent contradiction might lead one to question the initial set-up of

the problem. However, one of the key contributions of Ridgely's work was the

recognition that the neutrally stabilizing solution (not the stabilizing solution) to

(3.12) is the solution that is desired in order to obtain an on-boundary mixed

solution. If (A + Y"2QC Ce) is neutrally stable (that is, it has at least one

jwo-axis eigenvalue with the remaining eigenvalues in the left half plane), then

there are an infinite number of non-zero solutions (Y) of varying rank ([SZ70],

Lemmas 4.1 and 4.2). This immediately brings up the question of uniqueness of

the mixed H2/H.* solution. No proofs of uniqueness have been given, and

although this issue was touched upon in this research while trying to prove
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optimal order, no proofs of uniqueness will be offered here. While it may turn

out to be true that the solution is indeed unique, it would not be surprising to

find out that it is not, since both the H2-suboptimal and H,-suboptimal (and

optimal) are non-unique.

Since these equations are intractable analytically, they must be solved

numerically (Note: even though closed-form solutions for Ac, Bc, Cc are not

available, some important results can be shown from these equations. Some of

the key theorems that describe the nature of the mixed problem for full order

controllers are given later in Section 3.4). There are software programs readily

available that solve Riccati and Lyapunov equations. However, they do not

return neutrally stabilizing solutions to Riccati equations and do not handle

Lyapunov equations that have no constant terms. The equations could be

numerically handled without using any Riccati or Lyapunov solvers, but the

number of unknowns becomes unreasonable very quickly. Also, the numerics

become erratic near the solution because the solution lies just on the boundary

of non-existence of solutions. Therefore, even to solve this problem numerically,

modifications are needed. This is the motivation for setting up the suboptimal

mixed H2/H,, problem, described next.
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3.3 First-Order Necessary Conditions for the

Suboptimal Mixed Problem

The objective now is to develop a suboptimal mixed H2 /H, problem that has

a set of necessary conditions that are more numerically stable and that approach

the optimal solution. Recall the statement of general mixed problem:

Determine (Ac, Be, Cc) that minimizes the cost function

J(AC, Bc, Cc) = tr [ 2CIz -

where Q2 is the real, symmetric, positive semidefinite solution to

A02+ Qw T T 0A + T+B w Bw  = 0

and such that

Qo e Q-+ QAT + .Y-2Qwoor(eQoc + dT= 0

has a real, symmetric, positive semidefinite solution.

Now, for the suboptimal mixed problem, define a new cost objective (the

constraint equations remain unchanged):

J ,(Ac, Bc , Cc) = (1-IA) tr[Q2CET E'] + Az tr[QC T Ce] (3.14)

where
SE R, j3E [0,1]
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Notice that when A = 0, the problem reduces to the original optimal mixed

problem. The additional term, Qo(ce C e) in the cost function is partially

variable as (Ce Ce) could actually be any real, symmetric, positive semidefinite

matrix. The reason for choosing (Ce E) is that, for I ; 0, the term

-T -tr[Qo.Cece] is the entropy of Ted ([Rid9la,1181, Thin 5.1.1). This is very

convenient because it provides an excellent starting point for the numerical

algorithm. When 1A = 1, the problem reduces to pure entropy minimization for

which a closed-form solution is available (it is the central H,. controller at the

given level of -y).

The reason for adding the extra term into the cost function was to try to

modify the necessary conditions so that the Lyapunov equation in the necessary

conditions, Equation (3.13), would have a small symmetric positive semidefinite

constant term. This would enable the use of a Lyapunov solver and would

require the term (A, + 32Q.T Ce) to be stable without Y - 0. Hence, the

stabilizing solution to Equation (3.12) would be desired and a Riccati solver

could also be used. The additional term does indeed accomplish this.

With the new cost function defined, the suboptimal mixed H2/Ho, Lagrangian

becomes

= (1-IA) tr[Q 2CT Cz] + jA tr[QoCe Cel

tr{[AQ 2 + + w

+ tr{[AQ, + Qo.AT + ,2QOC eQ, + dT~y (3.15)
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Now, the partial derivatives of this new Lagrangian are [Rid9la, 116-117]

a_ I T T
Me_ 12Q2 + X2 Q2 + y12Qab + Y2Qb = 0 (3.16)aA c

T T T T T

A = XTC + X2 QTC + X2 B V2 + YQC
a BC 12 ly 12y 12 12ay

+ TCT + yT Va B  e(.7
2Qab y + Y ab + 2cVb = 0 (3.17)

BTXIQi 2 + BTX 12 Q2 + (I-)RTQ 2 + (I-A)R 2 CcQ 2ace
T T T

+ Bu Y1Qab + Bu Y12Qb + #RabQab + /.RbCcQb
-2T DTT

",/-2 [ RabQaYlQab + RabQaYl2Qb + RabQabyTQab

T +R T y +RT" RabQabY2Qb + RbCcQab yQab + RbCcQbyl 2 Qab

+R T +R(3.18)
+ RbCcQabYl 2 Qb + RbCCQbY 2 Qb ] : 0

-T -Tax = AQ,2 + 2 AT+ BwBw = 0 (3.19)

a I' - ATX + XA + (I-_,)crcz = 0

aQ 2 z(3.20)

a YA=AQ.+Q.AT+--.Tt AT -
ay + e Q- + Bd d (3.21)

a -I A [,A+,y2Q., T(c ]TY + Y[A+,,_2Q,(Te] + t-T

aQ.. el Ce Ce 0

(3.22)
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It is immediately obvious that the clever modification of the cost function is

very helpful for setting up a more well-behaved problem for numerical solution.

Equation (3.22) is a typical Lyapunov equation, and Equation (3.21) now requires

a stabilizing solution. At 1 = 0, the necessary conditions are exactly the same

as the ones derived for the optimal mixed problem. At t = 1, the problem is the

minimum entropy problem for which a closed-form solution can be found. Now,

all that is required in the numerical solution is to start with the central H.

controller (with i = 1) and successively reduce 14 until the solution converges to

the optimal mixed solution (which it does, as will be shown in the next section).

3.4 Summary of Full Order Results

The suboptimal mixed problem is set up purely for the sake of performing

the numerical solution. Even though the optimal mixed problem could not be

solved in closed-form, some important characteristics of the solutions have been

proven for compensators of equal order to the plant. The key proofs that relate

directly to the increased order problem are summarized here.

Notice that until now, the order of the compensator K(s) has not been

specified, so all the necessary conditions are valid for any order. However, as

compensator order changes, the sizes of the equations change. This means that

in order to continue with the analysis (either numerically or analytically) the

order of the compensator must be chosen. In Ridgely's work, the order was

selected to be full order (that is, n. = n). The majority of the proofs and

3-21



examples given in this section, therefore, are given under the assumption of a full

order compensator.

Theorem 3.4. 1: For nc of any order and -y < -y0, there is no solution to the

mixed H2/Ha. problem.

Proof: See [Rid9la,102], Thm 4.2.2.

Theorem 3.4.2: Assume ne _> n, and -y is selected such that -y -> 72. Then

i) Kmi x = K2opt

ii) a 0 1

* 7
iii) -y =3'

Proof: See [Rid9la,101], Thin 4.2.1.

Theorem 3.4.3: Assume nc = n, and -y is selected such that -yo < ' < /2.

Then the solution to the mixed H2/H. problem lies on the boundary of the

oo-norm constraint. That is, Kmix is such that y* = -y.

Proof: See [Rid9la,104], Thin 4.2.3.

Theorem 3.4.4: Assume nc = n. A plot of a* versus -y for -y > y. is

monotonically decreasing with -y.

Proof: See [Rid9la,123], Thin 5.1.5.
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There are also some important theorems for the suboptimal mixed problem.

One of the most important insures that the suboptimal problem converges to the

optimal solution.

Theorem 3.4.5: Assume nc = n, and -y > -yo. Then J,, given by (3.14)

converges to the optimal mixed H,/H. problem as IA - 0.

Proof: See [Rid9la,120], Thm 5.1.2.

One the best ways to visualize all of the above theorems is by examining a

typical plot of Ted versus Tzw 11 2.

Q(s) -0

mie so'' uL ... ... s-,mixed solution

YO ~-norm of Ted Y

Figure 3-3. Example Full Order Mixed Plot

This plot is taken from actual data from Ridgely's full order SISO example

[Rid9la, 167]. Several characteristics are immediately evident. All solutions lie
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inside of (or on) the ao and y. boundaries. The 2-norm gets very large near -y0 .

The mixed curve is monotonically decreasing and does not reach aoo until 7Y2-

The mixed curve literally stops at the (ao,-' 2) point. Also shown on the plot are

the central HO, solutions (Q = 0). Notice the large improvement of the mixed

solutions over the Q = 0 solutions. This plot is very encouraging from a

designer's standpoint. It shows that a significant reduction in the o0-norm can

be achieved by sacrificing only a small amount of H2 optimality. Physically, this

means that there are regions where the system can be made much more robust

without giving up very much H2 performance.

Recall that all the above results assume a full order compensator. What

would the mixed plot look like for higher order controllers? Do the higher order

controllers exhibit the same characteristics? Is it possible to increase the

compensator order enough to achieve a0 at level of -y below 72? These are issues

that are addressed in the next two chapters.
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IV. Increased Order Compensators in
Mixed H2 /Ho Optimization

4.1 Op)gtimal Mixed Problem

In Chapter III the general mixed H2/Ho, problem was developed. During the

development, the form of the compensator was assumed, but its order was not

specified. Then, after finding the necessary conditions for a minimum, there

came a point where the order of the compensator had to be fixed before the

analysis could continue. Results for full order compensators have been

demonstrated; however, increased order controllers have not yet been thoroughly

addressed. Due to the dynamic nature of solutions under the assumption of state

availability, it was informally conjectured by Rotea & Khargonekar that

compensators of order greater than the plant would be required in the output

feedback case [RK91,310] (this conjecture will be shown to be true for certain

choices of y). The issue of higher order compensators is, therefore, well

motivated. This chapter extends some of the full order results to compensators

of order greater than the plant for the output feedback case, and takes some

preliminary steps toward answering the question of optimal compensator order

for the mixed H2/H,, problem.

4-1



First, when examining the mixed problem, it will be helpful to define three

regions based on the chosen level of -y:

Region 1: 0 < y < -y0

Region 2: '0 < 3' < 72

Region 3: 72 -< 
_Y 
-< CO

As seen already in the full order case, the nature of the solution is highly

dependent on -y. Therefore, each region will be addressed separately.

4.1.1 Region 1. Region 1 can be dismissed immediately, as there is no

.controller of any order that will meet the co-norm constraint since the set of all

H., suboptimal controllers is then empty (see also Theorem 3.4. 1).

4.1.2 Re2ion 2. Region 2 (-yo < -y < 72) is the region of greatest interest

since it is here that there may be competing objectives. Recall that in the state

feedback case, if y is chosen such that a solution exists, the absolute minimum

of 1I T J 2 could be achieved while meeting the 11 TJ* constraint. Under

output feedback, this is not true for -y levels lower than Y2-

Lemma 4.1.1: Assume n¢ _> n, and -y is selected such that -yo < -Y < 72.

Under output feedback, it is not possible for the mixed H2/H. controller to

achieve the absolute minimum 2-norm of Tzw. That is, ao d oto.
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Proof: Assume a * = ca. Then, by the parameterization of all H2-(sub)optimal

compensators, Q=O, and the compensator is unique (K2opt). -y* is identically

equal to '2. This is a contradiction for 'y < 7Y2. Therefore, if -y < 72, then

a * da regardless of compensator order. U

It has been shown that for full order compensators (that is, nc=n), the

solution to the mixed H2/H. problem lies on the boundary of the co-norm

constraint. In other words, in Region 2, -y* = -y. This result is also true for

higher order compensators.

Lemma 4.1.2: Assume nc _> n, and -y is selected such that -y. < -y < 7Y2. The

solution to the mixed H2/H. problem lies on the boundary of the co-norm

constraint (-y* -y).

Proof: For nc = n, see Theorem 3.4.3.

For nc > n, begin by assuming that: a) the solution is off the boundary

(Y=O), and that b) K(s) is a minimal realization. With the assumption that the

solution is off the boundary, the first order necessary conditions (with the sub-

blocks expanded) are given by:
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X12Q12 + X2Q2 = 0 (4.1)

T T T T + xTv + X2BcV 2 =0 (4.2)
X12 QICY + X2 Q1 2 Cy 12 12+X2V 0

T T TBu XIQ 1 2 + Bu X 12Q2 + RT2Q12 + R2 CcQ 2 = 0 (4.3)

AQ 1 + QjAT + BuCcQT2 + QI 2CTBu + V1 = 0 (4.4)

TT TT

AQ 12 + Q12 + BUCcQ 2 + QiCy B 1 + V12 B7 =0 (4.5)

TTTT Be2T 0(46

AcQ 2 + Q2AT + BcCyQi 2 + Q12 Cy Be + BcV2BT = 0 (4.6)

ATXI + XIA + Cy B x 2 +X2BCy + R 1 = 0 (4.7)

ATX1 2 + X1 2Ac + CT B X2 + X1BUCC + RI 2 Ce = 0 (4.8)

T T T xTB +T R(49Ac X2 + X2Ac + Cc Bu X12 + X12 + 2 C0 (4.9)

Note that these equations are valid and must be satisfied regardless of the

compensator order that is chosen.

Consider equation (4.6). Since Q2 - 0, from [KJ72, 147-148] it follows that

Q2 
> 0 (4.10)

Q12 = Q12Q2+Q2
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where Q2+ is the Moore-Penrose pseudoinverse of Q2. Therefore, (4.6) can be

rewritten as

(AC+BcCyQl 2Q2 +)Q2 + Q2 (Ac+BcCyQ12Q2+)T + BCDywDywBC = 0 (4.11)

Now, since (At,Be) was assumed controllable (minimal realization), by ([Won85],

Lemma 2.1) it follows that (AC +BcCyQi 2Q2 +,B,) is also controllable. Further,

since Dyw has full row rank, (AC+BcCyQ12Q2+,BcDyw) is controllable. Now,

using the dual of ([Won85], Lemma 12.2), equations (4.10) and (4.11) imply

Q2 >0. Therefore, Q2
I exists. A similar argument applied to (4.9) implies that

X2 -1 exists.

Now, examine equation (4.1), rewritten as

X2Q2 = -T2Q12 (4.12)

For the case of nc > n, X 12 and Q12 are non-square, X 12 E Rnxnc and

Q12 ERnxnc. Therefore, the highest rank that the product X12 Q12 can have is n,

and by (4.12) this implies rank(X2Q2 ) < n. Therefore, X2
"1 (X 2 ER xncnc) and/or

Q2
-1 (Q2ERncxnc) do not exist. However, it was already shown that both X2-1

and Q 2
l exist; thus, a contradiction. At least one of the assumptions was

violated. There are three possibilities, all of which yield the same conclusion:

1) If K(s) is a minimal realization, then Y o 0. Therefore, the solution lies

on the boundary.
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2) If Y - 0, then K(s) is not a minimal realization. It immediately follows

(see [Rid9Ia, 106]) that K(s) is just a state space transformation of the unique nth

order compensator K 2 opt, plus arbitrary pole-zero cancellations. Again, the

solution lies on the boundary.

3) If both assumptions were incorrect, then K(s) is not a minimal realization

and Y ;d 0. The solution still lies on the boundary. U

With these results in hand, the characteristics of Region 2 can be summarized

as follows:

Theorem 4.1.1: Assume nc > n, and -y is selected such that -y. < y' < 72.

Then,

i) 010 < * nc *n

(where a * is a* for an mth order controller)

ii) -' = -

iii) n* n

Proof: i) ao < ac follows immediately from Lemma 4.1.1. If the higher
* *

order Kmix is simply a non-minimal realization of the full order Kix,, an C=Of n"

However, there is an infinite set of H2 -suboptimal controllers for a > ao , so

further reduction of a* may be possible. This reduction is indeed possible, as
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will be shown by example. It is conjectured that condition i) can be strengthened

to a*nc < a*n in general, but this still requires formal proof.

Condition ii) was shown in Lemma 4.1.2. The solution lies on the boundary

of the oo-norm constraint for increased order controllers.

Condition iii) follows from i). However, to prove it more formally, assume

the optimal order of K mix is n. Then, there can be no other compensator of any

order that can achieve a value of 1ITzw 112 lower than a *. However, as will be

shown in the examples, higher order compensators can be used to achieve a lower

o* than that achieved with an nth order controller. This contradicts the

assumption that the optimal order must be n. Therefore, in general, the optimal

order may be greater than the order of the plant. In fact, if the conjecture that

Of* < o'*n is shown to be true, iii) can immediately be strengthened to n*> n.

4.1.3 Region 3. For Region 3 (7Y2 < -Y : -), the o,-norm constraint is

inactive and the problem reduces to an uncons J H2 optimization problem

for which optimal order is known.

Theorem 4.1.2: Assume nc _ n and -y is selected such that y >- 72. Then

i) Kmix = K2opt

ii) a = 0

iii) 3' = Y'2

iv) n = n
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Proof: For nc = n, the H 2 optimal controller is unique and is given by the

results in Section 2.1 with Q = 0. Using this compensator, by definition

1I Tzw I 2 = cio and 11 Ted II w = 72. Since a. is the absolute minimum achievable

2-norm of TZW, and since the constraint Ii Ted 11,. -: y is trivially satisfied when

_Y 2t 72, condition i) is true for n, = n.

For nc > n, K2opt makes IITzI 2 = a, which is the minimum achievable

value of 1 T 11 2 using any compensator of any order. Thus it must be the

solution and condition i) is true for nc > n.

Conditions ii) and iii) follow immediately from the definitions given in

Section 3.1.

Condition iv) holds because K2opt is a unique compensator of order n. If nc

is chosen such that nc > n, KmiX must be nothing more than a state space

transformation of the unique compensator plus arbitrary pole-zero

cancellations.

Some extensions from the full order case to the increased order case have

now been made. However, while the optimal order of the mixed solution is not,

in general, the order of the plant, the ultimate question of what the optimal order

is remains to be proven.
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4.2 Suboptimal Mixed Problem

As described in Section 3.3, due to difficulties with the numerics of the

necessary conditions for the optimal mixed problem, a suboptimal approach is

used when solving the problem numerically. However, since this is different

problem, the nature of the suboptimal problem needs to be addressed. A main

concern is: as t - 0, does the suboptimal problem converge to the optimal?

Simply because the jt = 0 case reduces to the optimal mixed problem does not

imply that the function J, (Equation (3.14)) converges to the function J (Equation

(3.4)) as 1A approaches zero. It is possible for a function to approach a certain

value in the limit and have a discontinuity at that point (that is, the value of the

function at the point is completely different than the value of the limit). For full

order compensators, it has been shown that the suboptimal problem does approach

the optimal as jA-0 (see Theorem 3.4.5). However, before numerical solutions

are obtained for higher order compensators, this same convergence needs to be

demonstrated for n. > n.

Lemma 4.2. 1: Let G(s) = C(sI-A)-B with A stable. Define 11 G(s)II -Y nand

let -y > Yn. Define z = - IN -> 0. Then as - 0, the value of the entropy,

I[G(s),-y] (which is singular at e = 0), converges to

tr[XnC TC]

where Xn is the neutrally stabilizing solution to the ARE

AX n + XnA T + -Y.-2XnCTCXn + BBT = 0
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Proof: Immediate, fre.a the fact that Theorem 5.1.1 and its proof, given in

[Rid9la, 118-119], are completely general. Even though the assumption that

n. -- n was made prior to this theorem, the theorem as stated is not a function of

compensator order. M

This result is very important for the suboptimal mixed problem. It is well known

that the entropy at E = 0 is infinite. However, until this theorem was given, it

was generally accepted in the literature that the entropy continuously approaches

infinity in the limit as e - 0. If this was true, then the added term tr[Q , Ce]

in the :uboptimal mixed H2/H . cost function would become infinite as #t

approaches zero, because the neutrally stabilizing solution to the related Riccati

equation (3.12) is required in the optimal mixed solution. However, since the

entropy approaches a finite value in the limit, it is possible for the suboptimal

mixed problem to converge.

Theorem 4.2.1: Assume nc _> n, and -y > y.. Then J. given by (3.14)

con-verges to the optimal mixed H2/H problem as A - 0.

Proof. For nc = n, see Theorem 3.4.5.

For n¢ > n, proof is immediate upon recognition that Theorem 5.1.2 and its

proof given in jrid9la,1201 are completely genera! and do not depend on

compensator order. The transfer function discussed in the proof is the closed-
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loop transfer function Ted, and no restrictions are placed on its order. For

convenience, a rough outline of the proof is as follows:

- Ted is stable and strictly proper at all values of IA

- it follows that the second term in (3.14) is I[Ted,-Y] for IA ;4 0

- from Lemma 4.2.1 the entropy converges to a finite bound as i -, 0
-T

the term IA tr[QooCe Ce] therefore approaches zero as 1A - 0

- thus, J A - J as IA - 0

Even though no rigorous proofs were required to extend the full order case

to the higher order case in proving the convergence of the suboptimal mixed

problem, this was an important issue that needed to be shown. The suboptimal

mixed problem does indeed converge to the optimal for higher order

compensators. Having shown some key theoretical results, now consider the

numerical solution of the mixed H2/Ho problem.
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V. Numerical Solution

5.1 Davidon-Fletcher-Powell Algorithm

Since a closed-form solution of the mixed H2/H, problem is not available,

the problem must be solved numerically. There are many numerical optimization

algorithms available. Ideally, a second order gradient method (Newton's

procedure) might be desired, but by definition, this type of algorithm requires the

second partials of the function being minimized. For the mixed H2 /H, problem,

these second derivatives are fourth-order tensors. Therefore, due to memory

limitations and excessive execution times (as discovered by [Rid9la]), this

approach was avoided. Instead, an algorithm developed by Davidon and further

described and refined by Fletcher and Powell was used (see [Fox7l,104-109]).

The Davidon-Fletcher-Powell (DFP) algorithm is a very powerful quadratically

convergent first-order method. It does not require the second derivatives, but it

does calculate estimates of these derivatives. These estimates are used to form

a variable metric which is improved with each iteration. The flow diagram

shown in Figure 5-1 outlines the basic progression of the algorithm. X is a

column vector containing the unknown variables. For the mixed H2/Ho, problem,

these are the Ac, BC, and Cc matrices stretched into a vector. F(X) is the

function being minimized. For the mixed problem, F m JA,. The gradient,
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SStart

Establish
initial values

for X, S

Select x
to minimize
F(X+xS)

X-X+x*S

<.convergence

false
Terminate

H-H+M+N

S - - H VF(X)

Figure 5-1. DFP Flow Diagram

VF(X), for the mixed problem are the partial derivatives of the Lagrangian I

with respect to Ac, Bc, and Cc stretched into a column vector. S is the matrix

that specifies the direction that the current guess of X needs to move in order to

reduce F(X). Typically, in a true second-order method, S = - j VF(X), where

J is the Hessian (second derivative matrix). As already mentioned, DFP

estimates J-1. This estimate is a symmetric, positive definite matrix defined as

H. Thus, in DFP, S = - H VF(X). K is the metric that controls the size of the
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step tc be taken in the S direction. M and N are matrices that are used to

calculate H, and will be defined shortly.

The iteration proceeds as follows:

1) Begin with an initial X vector and H. The initial X that was used was

the initial guess of the compensator. Section 5.2 discusses how this initial guess

was determined. The initial H was chosen to be the identity matrix; thus the

initial direction of movement was simply the negative of the gradient at that

point.
2) Compute Xq+ 1 = Xq + K* Sq, where K*q minimizes F(Xq + KqSq). The

method used for finding K* was a simple one-dimensional search involving a

doubling/bisection technique. For an outline of this technique see [Rid9l,130].

More sophisticated methods were attempted in order to speed up execution times

(this is where most of the computations are required); however, this method

proved to be the most reliable in the face of such a difficult function.

3) If the algorithm has not converged, compute Hq+ 1 = Hq + Mq + Nq,

where

Yq -VF(Xq+I) - VF(Xq)

S T,SqSq

Mq =K q S q
M = q T

q q

N q = (HqYq) (HqYq )
T

Yq H
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4) Finally, calculate the new S by Sq+ 1 = - Hq+ 1 VF(Xq+i) and return to

the K* calculation step with the new X and S.

Convergence of the solution is declared when

TVFq HqVFq

I F(Xq) I [Fox7l,104-109]

where E is a small positive number that is defined by the user prior to execution

(values of 10-6 were typical).

This algorithm was coded into FORTRAN to run on a VAX mainframe. The

FORTRAN program is given in the appendix. Note that in the code, the variable

K is called a. This is because the program was written to be consistent with the

nomenclature given in [Fox7l]. However, in order to avoid confusion with the

definitions of a given throughout this work, the discussion in this section uses

the nomenclature K. A PRO-MATLABT M version of DFP was used by Ridgely in

his work. The FORTRAN version was found to be about 7-10 times faster.

An outline of the process for using the DFP program to solve the mixed

H 2/H, problem is as follows:

1) Select the desired compensator order and level of -y and determine an

initial guess for the mixed compensator. As will be shown in the following

section, tnis %,as not a trivial task. The program is extremely sensitive to the

starting point.
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2) Start with a relatively high value for 14 (usually between 0. 1 and 0.5) and

run the program until it converges.

3) Use the compensator found in step 2) as a new initial guess and re-start

the program at a lower value of A.

4) Continue the process of reducing IA until the solution converges

acceptably close to the optimal mixed solution (values of around 10-4 were

typically attained for IA). Three items were checked when determining if the

solution was "close enough." First, the 2-norm of Tzw would be checked to see

if it was still becoming smaller. Generally, when convergence was declared,

reductions could only be seen in the fifth or six decimal place. Second, since it

was known that the solution has to lie on the boundary of the c-norm constraint,

the o-norm of Ted was checked. At "convergence", 'y* was typically within a

10-6 tolerance of -y (from below). Finally, the derivatives with respect to Ac , BC,

and Cc were checked to insure they were close to zero (they should be exactly

zero for the true s,.kition). Usually, at convergence, most of the elements in

these derivative matrices were around 10-3 to 10- 5.

5.2 Determining an Initial Guess for DFP

As with any numerical technique, the DFP algorithm requires an initial guess

of the solution. As discussed in Chapter 3, the central H. (minimum entropy)

controller is the solution of the suboptimal mixed problem for U = 1. This is a

full order compensator. Therefore, if the desired order of the mixed solution is
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the order of the plant, this is an acceptable initial guess for the given level of -Y

or higher (note that if a central H , compensator designed for a certain level of

-y is used as a starting point for a higher -y, it may be too far away from the

solution for the numerics to converge even though it is an "acceptable" starting

point). While the full order minimum entropy controller is a good initial guess

for a full order mixed problem, it cannot be used directiy for an increased order

problem because its size is incompatible. Therefore, finding a good initial guess

for the increased order problem is not quite as straightforward as the full order

case.

The method for determining an initial higher order guess in this research

utilized the J-Q parameterization of K(s), depicted in Figure 5-2.

U y

uJ

Q

Figure 5-2. Parameterization of K(s)

If K(s) is an H. suboptimal compensator, J is completely known. The central

controller (Q = 0) is not the only acceptable choice for a starting guess. As long

as Q is stable, 3trictly proper, and has 11Q -. y, it will produce a

compensator that admits a solution to the X, Y, Q2, and Q, Lyapunov and
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Riccati equations in the necessary conditions. Therefore, the initial method used

was to simply choose a Q with enough arbitrary left-hand plane poles (and an

appropriate gain to ensure the oo-norm bound was met) to give the desired order

of K. This worked for the n + 1 order compensator in the SISO example, but did

not work for any higher orders. Even though the compensator was theoretically

acceptable, it was not close enough to the solution for the algorithm to "start

moving". It was found that the algorithm is very sensitive to the starting guess.

The method that ended up being the most reliable was less arbitrary than the

simplistic approach just discussed. It is possible to take a given compensator K

and a J (which is completely specified for a given level of 'y) to calculate a Q

that, when placed in a feedback loop around J, will produce the given K (see

[Rid9la,152-1541. A PRO-MATLABT routine (named K2Q) that accomplishes

this was utilized. It was found that the Q that was calculated always had a

relatively high order (it was almost never a minimal realization).

The first step in determining a higher order initial guess was to find the

minimum entropy controller for the given 3y. If this compensator is input into

K2Q, the resulting Q would be Q = 0 (as it should be). However, if the central

HO, compensator was modified slightly (by simply truncating the elements in its

state space C matrix after the second or third decimal place) the resulting Q

would be non-zero and relatively high order. Then, using a balanced Schur

model order reduction, Q was reduced to the amount of states (nC - n) required

to achieve the desired order of K. Thus, the resulting K was essentially a
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nonminimal realization of the central H. compensator. This process does not

guarantee that the 11Q 1 -y requirement will be met. Therefore, the state

space C matrix for Q would be arbitrarily multiplied by 0.6 in order to reduce

Q's maximum singular value. This was always done, even when the o-norm

bound on Q was already satisfied, because it tended to help the algorithm start

moving.

Once a mixed solution was found, it could also be used as a starting guess

for a higher compensator order, rather than the minimum entropy controller. Q

was always non-zero for the mixed solution, and again it was typically high

order. The same process of reducing Q to the desired order and multiplying its

C matrix by 0.6 was also used for coming up with the next higher order starting

point.

Another variable that has not been discussed yet is 1A. This could also be

varied in order to help get the program moving. Usually, the first initial guess

could be started with ji = 0. 1; however, sometimes I had to be increased to as

much as 0.7 in order to start the process. In summary, finding a good initial

guess for the higher order case is not a trivial task. Many times, several

different attempts had to be made before an acceptable starting point could be

found.
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5.3 SISO Mixed Optimization Example

Consider the mixed H2/H. optimization system block diagram that was

discussed and developed in Chapter 3 and shown in Figure 5-3.

d e
w z

u y

Figure 5-3. Mixed H2/H. Optimization Block Diagram

For this example, all signals (d, w, e, z, u and y) are assumed to be scalars.

The plant P has the state space realization

A Bd B w  B u

Ce Dd Dew DeuP (s)

C D Dz Dz

Cy Dyd Dyw  Dyu
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In order to make direct comparisons with a known full order case, the same SISO

system that was defined in [Rid9la,130-131] was chosen for this analysis. The

state space matrices of the system are:

-0.3908 -0.4565 1.2657 1

A = 1.4453 -1.0491 -1.2077

-0.1288 0.6744 1.0324

0.0488 1.4077 -0.4275

Bd 0.3608 Bw  0.9723 Bu = -0.4470

0.3564 L-1.6050 L-0.9172

Ce = [ 0.9420 0.0144 0.1187]

C, = [ -0.0450 0.3606 1.8972]

Cy = [ -1.5567 -1.9432 -0.0914]

Ded = [0] Dew = [0] Deu = [1.3575]

Dzd = [ 0] Dzw = [0] = [ 0.5781 ]

Dyd = [ 0.5185] Dyw = [0.3899] Dy u = [01

First of all, note that this system does satisfy all the assumptions given in Section

3.1 This is a third order SISO system whose "unweighted" plant, given by
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Pyu(S) = Cy(sI-A) 1'Bu + Dyu, is open-loop unstable and minimum phase. The

singular value plot of Pyu is shown in Figure 5-4.

10

0-

-10-

-20
im

-30

-40

-50

-601
1O-3 10-2 10-' 0 10L 10 103

frequency (rad/s)

Figure 5-4. Magnitude Plot of SISO Plant

Before beginning the mixed problem, it will be helpful to know the limits of

achievable H 2 and H. performance. Consider performing pure unconstrained H 2

and H. optimization on the given plant. Figure 5-5 shows the singular value

plot of the unique three-state H2 optimal controller K2 op. Figures 5-6 and 5-7

are the singular value plots of the corresponding closed-loop transfer functions

TW and Ted. The minimum achievable 2-norm of Tzw is Uo = 9.9263. The

o-norm of Ted using K2opt is 72 = 4.5364.
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Figure 5-5. Singular Value Plot of K2 opt
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Figure 5-6. Singular Value Plot of Tzw for op
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Figure 5-7. Singular Value Plot of Ted for K2opt

Now, if H. optimization is performed, the minimum achievable co-norm of Ted

is found to be about -yo - 2.1426. The freedom parameter Q(s) from the

parameterization of H, controllers must be specified. The central H.

compensator (i.e. minimum entropy controller) is of particular interest since it

will be the initial guess for the DFP program (at It = 1), so choose Q(s) = 0.

The singular value plot of the H, suboptimal central compensator for -Y=2 . 1426

(Ko2.1 426) is given in Figure 5-8. Figures 5-9 and 5-10 are the singular value

plots of the corresponding closed-loop transfer functions Tzw and Ted. The

2-norm of TZW for K..2.1426 is IlTzwI 2 = 94.323, considerably higher than ao.
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Figure 5-8. Singular Value Plot of Koo2.1426
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Figure 5-9. Singular Value Plot of T. for K-2.426
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Figure 5-10. Singular Value Plot of Ted for K..2. 1426

Although it is not evident in these plots, they all have a high frequency roll off.

If the optimal H. controller was found, there would be no roll off and 11 Tzw 112

would be infinite.

Now consider performing mixed H/H. optimization assuming the controller

is full order. A brief summary of Ridgely's results are shown in Table 5-1 and

Figure 5-11. Table 5-1 shows the values of II Tzw 112 and I Ted II - for the mixed

and central H. controllers at varying levels of -y. Notice that 11 Ted 11 , =-Y for

the mixed controller. Actually, the oo-norm values are rounded off (typically

within 0.00001). Recall that the true mixed solution must lie on the boundary

of the oo-norm constraint. Figure 5-11 shows this data in graphical form.
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Table 5-1. SISO Example Full Order Results

(Q = 0) (Q = 0) (mix) (mix)

7I1 Ted 11 - 11 Tzw 11 2 11 Ted 11 1. I Tzw 112

2.1426 2.1426 94.323 2.1426 - 94.323

2.145 2.145 20.387 2.145 - 20.387

2.15 2.15 16.099 2.15 16.091

2.2 2.2 14.055 2.2 13.868

2.25 2.247 14.076 2.25 13.295

2.35 2.3389 14.305 2.35 12.501

2.5 2.4675 14.622 2.5 11.616

2.75 2.6589 14.953 2.75 10.870

3.0 2.8243 15.107 3.0 10.460

3.25 2.9673 15.161 3.25 10.225

3.5 3.0909 15.164 3.5 10.086

4.0 3.2913 15.107 4.0 9.9539

4.5364 3.4532 15.025 4.5364 9.9263

10.0 3.9948 14.666 4.5364 9.9263

50.0 4. 1559 14.557 4.5364 9.9263

100.0 4.1611 14.554 4.5364 9.9263

[Rid91a, 166]
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Figure 5-11. SISO Example Full Order and Q(s) =0 Results

[Rid91a, 1671

No discussion of these full order results will be given here. Rather, these results

are included as a point of reference for the higher order results.

5.3.1 y,=2 .5 Results. Now, with all the preliminaries taken care of,

consider the case of higher order compensators. Since the nature of the results

using a higher order compensator was unknown, the basic approach was to begin

with the full order case and continually increase the compensator order until some

kind of trend could be recognized. Before this order sweep could be

accomplished, the design -y had to be chosen. -y= 2 .5 was the first level selected.
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Then, compensators of the following orders were obtained by running DFP: 3,

4, 5, 6, 7, 8, 9, 12, 18. Table 5-2 shows a summary of the higher order results

for -y = 2.5. Note that the o-norm values are essentially the same as -'. They

are actually slightly less than -y (typically by about 10-6).

Table 5-2. Higher Order Results, -y=2.5

Compensator
Order _ __'Y

3 (full) 11.61625 2.5

4 11.56329 2.5

5 11.52972 2.5

6 11.51510 2.5

7 11.50500 2.5

8 11.49373 2.5

9 11.48754 2.5

12 11.48654 2.5

18 11.48647 2.5

Figure 5-12 shows this same data on a graph. Note that since only integer order

compensators are allowed, this is not a continuous curve. In [Rid9la] it was

shown that a* = 11.507 for nc =9 at -y= 2 .5 (this was the only higher order result

given). The slight discrepancy is easily accounted for by the fact that the

question of "close enough" to the true solution is fairly arbitrary. Apparently,
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the solution given here is converged a little more. In fact, it is possible to very

slightly reduce the values given here even more.

11.62.

11.6

11.58

N

11.56
0

2
11I.54

I 5

11.52

*

11.5
*

11.48'
2 4 6 8 10 12 14 16 18 20

Compensator Order

Figure 5-12. Higher Order Results, -y= 2 .5

One observation can immediately be made: in general, the optimal order is

definitely not the order of the plant. This graph clearly shows that as order is

increased beyond full order (n=3), the value of the 2-norm of Tzw decreases.

There does appear to be an order beyond which meaningful reductions in a* are

no longer attained (i.e. nc=9). Also, in this example, a* is strictly

monotonically decreasing with increasing order. This behavior has not been

proven in general (if it was, it would prove that the optimal order is infinite).

However, it does appear to be true in this example.
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Figures 5-13, 5-14, and 5-15 show the singular value plots of the mixed H2/H,,

compensators with increasingly higher orders. Notice first that they all have the

same basic shape. The sharp peak at about 2.5 rad/sec decreases in magnitude

with increasing order. Also, as might be expected from Figure 5-12, there does

not appear to be much difference between the 9, 12, and 18-state compensators

(at least in terms of frequency response). Whether or not these compensators are

actually different realizations of the same 9th order controller will be discussed

later. From these plots, they certainly appear to be essentially the same.

16 . . ....... .
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Figure 5-13. Singular Value Plots of Kmix (3,4,5,6-state)
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Figure 5-14. Singular Value Plots of Ki x (6,7,8,9-state)
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Figure 5-15. Singular Value Plots of Kmi x (9,12,18-state)
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Figures 5-16, 5-17, and 5-18 show the singular value plots of Tw for the higher

order mixed solutions. In these plots it is apparent that the higher order

compensators decrease the 2-norm of Tw by making the peak in the curve

progressively narrower. Even though the peak rises slightly, the net change in

area under the curve decreases. Again, there are no distinguishable differences

in the 9, 12 and 18-state results. Figures 5-19, 5-20, and 5-21 show the singular

value plots of Ted for the higher order mixed solutions. These plots are the most

interesting because they best demonstrate the value of the higher order

controllers. In [Rid9la], it was shown for the full order case that the mixed

solution tries to recover to the H2 optimal solution. This makes sense since both

problems have the same performance objective. However, since the mixed

problem has a constraint that must be met, it will try to match the true optimal

solution as best as it can while satisfying the constraint. This can be seen

dramatically in Figure 5-22. This plot shows the H2 optimal, the central H".,

and the full order mixed solutions. Notice how the mixed solution tries to

recover to the H 2 solution. In the regions where the H2 curve exceeds the

o-norm bound, the mixed solution basically lies right on the o0-norm boundary.

Figure 5-23 shows an expanded view of this same plot with the 9-state solution

included (and Q=0 omitted). 'The extra degrees of freedom provided by the

higher order compensator enable a better recovery of the H 2 solution. As can be

seen, the 9-state curve makes a much sharper turn where the H 2 and Q=O curves

intersect. It also dips further down into the notch.
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Figure 5-17. Singular Value Plots of T,, for -y=2 .5
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Figure 5-18. Singular Value Plots of Tzw for -y=2 .5
(9,12,18-state)

2.5

2-

1 1.5

I
-3-state

10-3 10-2 lO-t 100 I01 102 103

frequency (rad/s)

Figure 5-19. Singular Value Plots of Ted for -y=2.5
(3,4,5,6-state)
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From all these plots, it is clear that increasing compensator order does produce

a better solution. However, after 9th order, no more significant improvement is

seen. The question then becomes: is 3n an optimal order? Are the 12th and 18th

order controllers simply nonminimal realizations of the 9th order controller?

Several different approaches were taken to answer this question. The first

approach was to examine the Hankel singular values of the compensators. If the

9-state controller truly has an optimal order, it might be expected that the 9-state

controller would have 9 relatively signficant Hankel singular values. The

12-state controller would have 3 Hankel singular values that are either exactly

zero or at least several orders of magnitude smaller than the other 9. Likewise,

the 18-state contoller would have 9 relatively small Hankel singular values.

However, this phenomenon was not found to be true. Table 5-3 shows a

summary of the Hankel singular values of Kmix for each order, in rough

magnitudes. Notice that even though some of the Hankel singular values get

relatively small for the higher order compensators, there is never any definite

division where tht remainder of the states are clearly superfluous. Thus, at first

glance, this approach does not give much help in determining if the higher order

compensators should be reduced.

Next, the actual poles and zeros of the compensators were plotted in order

to get a different look at possible pole/zero cancellations. Unfortunately, this did

not provide any more help. Every compensator 6th order and up had multiple

poles with zeros right on top of them. Simply by inspection, if the approximate
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Table 5-3. Hankel Singular Values of Kmix (7V=2.5)

3 4 5 6 7 8 9 12 18
state state state state state state state state state

7e-0 7e-0 7e-0 6e-0 7e-0 3e-0 4e-0 6e-0 5e-0
6e-0 6e-0 6e-0 6e-0 6e-0 3e-0 4e-0 5e-0 5e-0
2e-O 2e-0 2e-O 2e-O 2e-O 3e-0 3e-0 3e-0 5e-0

le-l 2e- 1 le-1 le-1 3e-0 3e-0 1le-0 3e-0
3e-2 4e-2 7e-2 2e-0 2e-O 9e-1I 2e-O

3e-2 4e-2 4e-1I le-1 2e- 1 le-1
3e-3 5e-2 5e-2 7e-2 5e-2

4e-2 4e-2 5e-2 4e-2
2e-3 4e-2 le-2

2e-2 le-2
9e-3 6e-3
3e-4 4e-4

2e-4
7e-5
3e-5
3e-5
4e-6

____ _ _ ___ _ __ ___ __ ___ ___ ______ ___4e-7

pole/zero cancellations are made, each of the higher order compensators would

reduce to

6-state -~ 4-state

7-state -~ 4-state

8-state - 4-state

9-state - (4 or 6)-state

12-state -~ (7 or 8)-state

18-state - (8 or 10)-state
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The final approach that was tried was to simply perform a Schur balanced

model order reduction on the 12 and 18-state compensators to see what they

looked like when reduced to 9th order. It was quickly discovered, however, that

it is impossible to remove even one state without immediately violating the

o-norm bound on Ted. This means that these reduced order controllers are no

longer valid solutions to the mixed problem. It is not really surprising that this

happens because the solution (for each order) lies right on the boundary of the

co-norm constraint. Therefore, any reduction in order immediately makes the

solution unacceptable. Based on this result, it seems that all the apparent

pole/zero cancellations are not true cancellations. These additional poles may

have very small residues, but they need to remain in the solution.

5.3.2 3'= 3 .0 Results. In order to see if the same trends observed in the

-y= 2 .5 case are typical, the -y level was fixed at 3.0. This time, however, only

6, 9, and 12-state solutions were found. Table 5-4 shows a summary of the

higher order results for -y = 3.0.

Table 5-4. Higher Order Results, -y=3 .0

Compensator
Order a -Y

3 (full) 10.460 3.0

6 10.44380 3.0

9 10.42787 3.0

12 10.42619 3.0
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Figure 5-24 shows this same data graphically.

10.48
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10.46-

E-

10.45
C
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2 4 6 8 10 12 14 16 18

Compensator Order

Figure 5-24. Higher Order Results, -y=3.0

The same decrease in a* for increased order compensators is clearly seen for this

level of y also. Notice, however, that there is less of an improvement than for

the y= 2 .5 case. This is because the full order mixed solution is already closer

to the H2 optimal solution due to the relaxation of y. Figures 5-25, 5-26, and

5-27 show the singular value plots of Kmix, Tzw, and Ted for orders 6, 9 and 12.

The same trends that were observed for -y=2 .5 are apparent here. The recovery

of the H2 solution is again seen. As shown in Figure 5-28, the -y=3 .0 solution

is able to recover more of the H2 solution due to the higher level of -Y. Also, the

higher order compensators do a better job with this recovery.
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Figure 5-25. Singular Value Plot of Kmfl,,, -y=3 .0
(6,9,12-state)
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Figure 5-26. Singular Value Plot of Tr, y=3.0
(6,9,12-state)
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Figure 5-27. Singular Value Plot of Ted, y =3.0
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Figure 5-28. Ted Comparison Plot for y=3.0
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5.3.3 Ninth-Order Results. y Sweep. Now, consider freezing the

compensator order and finding the solutions for a whole range of 's. Since the

9-state controllers for the two ' levels examined so far appear to be near the

limit of achievable mixed performance, select the compensator order to be 9.

Table 5-5 shows a summary of the results.

Figure 5-5. Results of 9-state -y Sweep

3-state Kmix 9-state Kmix Percents*

Y * a Difference

2.2 13.868 13.697 1.230

2.25 13.295 13.085 1.578

2.35 12.501 12.243 2.060

2.5 11.616 11.488 1.105

2.75 10.870 10.795 0.690

3.0 10.460 10.428 0.307

3.25 10.225 10.219 0.059

3.5 10.086 10.078 0.079

Note that the 3-state solutions are taken directly from Table 5-1. Figure 5-29

shows Ridgley's full order mixed plot with the 9th order solutions superimposed.

Figure 5-30 is an expanded view of this same plot. One fact is very obvious:

the 9th order compensators do not give large improvements in terms of reducing

the 2-norm for this example. The largest decrease in a* is about 2%.
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Figure 5-30. Mixed Plot (expanded), 3 and 9-state Comparison
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The mixed solution singular value plots of Ted and Tzw for the 9th order

compensators are given in Figures 5-31 and 5-32. These plots show a definite

recovery of the H2 optimal solution. This was true for the full order case

[Rid9la,164], and is seen to be true for the higher order case as well. In fact,

as shown earlier, the higher order compensators actually do a better job of

recovering the unconstrained H2 optimal solution than the full order controllers.

5 1 - -,,, I I I,, I ' l I I I - l I I,,v 1 1 ,1 -, , I ,

4.5- H 2

3.5 ---------------------------------- -
3.53

3 2.---------------------------------------I2.5 -------- ----------------------

.r -*.. 'v ,.. H ,,2 .1 4 2 6
-- ---- ------ -- -- - - - -- - - - - - --- -el ,- -- - 2 1 2

1.5 It \o\

1 11 \ A
1V" 

'0

0.5

lO-3 10-2 10-L 100 101 102 103

frequency (rad/s)

Figure 5-31. Mixed Ted Plot (9-state)
-y = 2.1426, 2.25, 2.5, 2.75, 3.0, 3.5, 4.5364
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5.4 MIMO Mixed Optimization Example

Consider the mixed H2 /H.0 optimization system block diagram shown in

Figure 5-3. For this multi-input multi-output example, all signals (d, w, e, z,

u and y) are assumed to be two-dimensional vectors. In order to make direct

comparisons with a known full order case, the same system that was defined in

[Rid9la,170-1711 was chosen for this analysis. The state space matrices of the

system are:

-5 2 14 20

1 0 0 0
A=

0 1 0 0

0 0 1 0

0.03 0.008 0.22 0.93 0.07 0.44

0.05 0.38 0.05 0.38 0.63 0.77
Bd 0.53 0.07 BW 0.68 0.52 BU 0.88 0.48

0.67 0.42 0.58 0.83 0.27 0.24

Ce= 0.55 0.33 1.80 0.12
L0.72 0.97 1.82 1.81

[0.07 0.38 0.91 0.461

= [0.50 0.28 0.53 0.94

0.05 0.77 0.13 0.691
Cy = [0.76 0.83 0.02 0.87J
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Ded = Dew "Dzd Dzw= Dyu 01[ [0
Dzu = Dyd = 0 [ 1

1 0
Deu = 0 0. I

Note that this system does satisfy all the assumptions given in Section 3. 1 This

is a fourth order MIMO system whose "unweighted" plant, given by

Pyu(S) = Cy(sl-A)'Bu + Dyu, is open-loop unstable and nonminimum phase.

The singular value plot of Pyu is shown in Figure 5-33.
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Figure 5-33. Singular Value Plot of MIMO Plant
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Before beginning the mixed problem, it will be helpful to know the limits of

achievable H 2 and H, performance. Consider performing pure unconstrained H 2

and H., optimization on the given plant. Figure 5-34 shows the singular value

plot of the unique four-state H, optimal controller K2opt. Figures 5-35 and 5-36

are the singular value plots of the corresponding closed-loop transfer functions

Tzw and Ted. The minimum achievable 2-norm of Tzw is o = 0.7975. The

co-norm of Tea using K2opt is '2 = 40.548.
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Figure 5-34. Singular Value Plot of K2opt
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Figure 5-36. Singular Value Plot of Ted for op
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Now, if H., optimization is performed, the minimum achievable oa-norm of Ted

is found to be about y - 2.3012. The freedom parameter Q(s) from the

parameterization of H, controllers must be specified. The central H,

compensator is of particular interest since it will be the initial guess for the DFP

program (at ti = 1), so choose Q(s) = 0. The singular value plot of the H"

suboptimal central compensator for -y=2 .3 012 (K-2.30 12) is given in Figure 5-37.

Figures 5-38 and 5-39 are the singular value plots of the corresponding closed-

loop transfer functions Tzw and Ted. The 2-norm of Tzw for K-2.30 12 is

jjTzw 2=1887.3, considerably higher than ao.
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Figure 5-37. Singular Value Plot of K.2.30 12
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Figure 5-39. Singular Value Plot of Ted for K oo2.3012
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Although it is not evident in these plots, they all have a high frequency roll off.

If the optimal H, controller was found, there would be no roll off and 11 Tzw 112

would be infinite.

Now consider performing mixed H2/H , optimization, assuming the controller

is full order. A brief summary of some of Ridgely's MIMO results are shown

in Table 5-6 and Figure 5-40. Table 5-6 shows the values of 1 Tzwl12 and

j d for the mixed and central H. controllers at varying levels of y'. Notice

that Ted 11 - =-Y for the mixed controller. Actually, the oo-norm values are

rounded off (typically within 0.00001). Figure 5-40 shows this data in graphical

form. Note that '2 is not shown on the plot because it is out at 40.548. This

shows the tremendous value of the mixed controllers. The long, flat "tail" on the

mixed curve enables huge reductions in the oo-norm of Ted while making only

small sacrifices in the 2-norm of Tzw. No further discussion of these full order

results will be given here. Rather, these results are included as a point of

reference for the higher order results.
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Table 5-6. MIMO Example Full Order Results

(Q = 0) (Q = 0) (mix) (mix)

SII Ted I. ITzw 112 IlTedil IITzw II2

2.3012 2.3012 1887.3 2.3012 - 1887.3

2.32 2.3199 119.129 2.32 115.713

2.35 2.3495 62.307 2.35 47.619

2.4 2.3979 37.008 2.4 23.664

2.5 2.4914 22.155 2.5 10.713

2.6 2.5807 16.799 2.6 6.9406

2.75 2.7069 13.11 2.75 4.6072

3.0 2.8975 10.415 3.0 3.1622

4.0 3.4578 7.5491 4.0 1.9115

5.0 3.7978 6.8949 5.0 1.4582

10.0 4.3708 6.2236 10.0 0.9800

40.548 4.5874 6.0753 40.548 0.7975

50.0 4.5925 6.0723 40.548 0.7975

100.0 4.5997 6.0678 40.548 0.7975

[Rid9la, 188]
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Figure 5-40. MIMO Example Full Order and Q(s)=0 Results

[Rid9la, 189]

Now, consider the case of higher order compensators. As in the SISO

example, the basic approach in the MIMO problem was to begin with the full

order case and continually increase the compensator order until some kind of

trend could be recognized. Before this order sweep could be accomplished, the

design y had to be chosen. As -y approaches y0 , the numerics become more and

more difficult. Therefore, a level of '= 3 .0 was selected. This was the only -Y

that was run due to the excessive computer time required to find a solution (for

example, the entries in Table 5-7 typically took from about eight to twelve hours

for the 4-state solution to about two weeks of almost continuous run-time for the
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16-state solution). In retrospect, perhaps a slightly lower -Y might have been a

better choice to demonstrate the value of the higher order compensators. As it

turned out, the improvements due to the higher order controllers were

observable, but they were small. Compensators of the following orders were

then obtained by running DFP: 4, 6, 7, 8, 9, 10, 12, 16.

Table 5-7 shows a summary of the higher order results for -y = 2.5. Note

that the oo-norm values are essentially the same as -y. They are actually slightly

less than -y (typically by about 10-6).

Table 5-7. Higher Order Results, -y=3 .0

Compensator * *t

Order a 7

4 (full) 3.15799 3.0

6 3.15530 3.0

7 3.15411 3.0

8 3.15246 3.0

9 3.15238 3.0

10 3.15232 3.0

12 3.15231 3.0

16 3.15216 3.0

Figure 5-12 shows this same data on a graph.
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Figure 5-41. Higher Order Results, -y=3.0

One observation can immediately be made: in general, the optimal order is

definitely not the order of the plant. This graph clearly shows that as order is

increased beyond full order (n=4), the value of the 2-norm of Tzw decreases.

This plot does not have a nice exponential-type decay as seen in the SISO

example. It might be that some of the solutions are not completely converged.

On the other hand, there is nothing that says what the shape of this curve must

be. In fact, even though this curve is also strictly monotonically decreasing,

there are no known proofs that guarantee this in general. The key observation

here is that all the higher order compensators do have a lower t* than the full

order solution. Also, notice that this curve basically bottoms out at nc = 8.
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This is two times the order of the plant (recall that in the SISO example, this

happened at three times the order of the plant).

The singular value plots of the mixed solutions are given in Figures 5-42 and

5-43. The corresponding singular value plots of Tw are shown in Figures 5-44

and 5-45. Figures 5-46 and 5-47 are the corresponding singular value plots of

Ted. The same trends that were observed in the SISO case can be seen here in

the MIMO case. As already mentioned, the higher order compensators do not

produce large changes or improvements in this example. This is probably a

combination of the system itself and the choice of -y. However, even though the

changes are small, they do produce some improvement. In order to show the

recovery of the mixed solution to the H2 solution, Figure 5-48 shows an

expanded view of the Ted plots. The H2 solution, 4-state mixed, and 16-state

mixed solutions are given for comparison. Notice that even though the mixed

solutions do not make the sharp turn to follow the H2 curve immediately, they

do make the sharp turn. The 16-state mixed compensator makes this turn sharper

than the 4-state compensator (as seen in the SISO example).
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Figure 5-42. Singular Value Plots of Kmix (4,6,7,8-state)
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Figure 5-43. Singular Value Plots of Kmi (9,10,12,16-state)
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Figure 5-45. Singular Value Plots of Tzw for -y=3 .0
(9,10,12,16-state)
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Figure 5-46. Singular Value Plots of Ted for -y=3.0
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Figure 5-47. Singular Value Plots of Ted for -y=3.0
(9,10,12,16-state)

5-51



-H 2

-4-state

2.5- - 6-state

2-

1.5-

0.5'
10-1 100 101 -.02

frequency (rad/s)

Figure 5-48. Ted Comparison Plot Expanded View (-y= 3 .0)
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VI. Conclusions and Recommendations

6.1 Optimal Order

Extensions from the full order case to the increased order case were made

in Chapter IV, and it has been shown by numerous examples that the optimal

order of the mixed H2/H. solution is not, in general, the order of the plant.

This is a departure from the nature of the separate, unconstrained H 2 and H,,

problems, and only serves to demonstrate the complexity of the mixed problem.

While it is now known that the optimal order of the mixed problem is not, in

general, the order of the plant, the ultimate question of what the optimal order

is remains to be proven.

At the outset, it was believed that the optimal order might be 3n (and some

of the initial findings seemed to confirm this.) A brief outline of the rationale

for this conjecture is as follows. Since the oo-norm bound must be satisfied, the

compensator K(s) can be parameterized as a lower LFT of J and Q as shown in

Figure 6-1, where J is given by an H., parameterization [DGKF89] and

QERH ., IIQl1 !56-
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w P Z
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J

Figure 6-1, Mixed Optimization Block Diagram with Q(s)

Since J is completely known, it can be combined with the nominal plant P to

form a new plant Pj whose order is 2n (assuming no pole-zero cancellations

occur). This is shown in Figure 6-2.

w

PJ

Q

Figure 6-2. Closure of the P-J Loop Through H, Optimization

The problem is now

inf 1ITzw[12  subject to 11 Q -y
QE RHw

If it can be shown that the optimal order of Q is the order of this new plant (2n),

the resulting compensator would have order 3n. Unfortunately, the problem set

up in this manner is no more tractable than the original. Therefore, no analytical
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solution to this problem has been found either (if it had, the general mixed

problem would be solved). Also, this Q could be further parameterized by a J2

and Q2 from an H2 parameterization on P, and a new "plant" of order 3n

created. If it could be shown that this continues indefinitely, it would lead to an

optimal mixed compensator of infinite order.

Since it has been shown that adding states to the controller does cause

improvement, it seems intuitive that this may continue indefinitely while

asymptotically approaching some minimum achievable a*. In fact, as a

conclusion of this research, this is formally conjectured and supported with three

evidences.

Conjecture: Assume -y is selected such that -y0 < -Y < 7Y2. The optimal order

of Kmix is infinite.

Evidence 1: In both the SISO and MIMO examples, every increase in order of

Kmnix produced a reduction in the 2-norm of T,,. Now, it could be rightfully

argued that these reductions may be within the noise level of the computational

abilities of the computer. Therefore, the reductions in the 2-norm are not real.

However, care was taken to perform all calculations in double precision. Also,

it does seem significant that reductions occurred in every instance. The numbers

being dealt with may be small, but they should not be completely discounted.
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Evidence 2: It has been demonstrated that the mixed solution tries to recover to

the H 2 solution while still meeting the o-norm constraint. This is seen most

clearly on the Ted singular value plots. Figure 5-23 is repeated below in Figure

6-3 for the sake of discussion.

2.5-

2-
it I

I i

0.51

io ' A
HI 2

10-1 0 L0 L  log

frequency (rad/z)

Figure 6-3. SISO Ted Comparison Plot Expanded View (,y=2.5)

The mixed solution lies on the oo-norm boundary wherever the H 2 solution is

above the design -y level. When the H 2 solution drops below the 00o-norm bound,

the mixed solution tries to follow this curve. Upon inspection of the higher order

results, it appears that the point where the mixed curve turns to follow the H2

curve, the true optimal mixed solution may have a point of discontinuity.

Certainly, in all the examples, this turning point becomes sharper with increased

compensator order. If it is true that this point is a point of discontinuity, it

6-4



immediately follows that the compensator must have infinite order. The

controller (at least for a SISO system) is nothing more than a ratio of

polynomials in the Laplace domain. Therefore, in order to make this

discontinuous turn, an infinite number of polynomial terms are required.

Evidence 3: Recall that two of the necessary conditions, Equations (3.10) and

(3.11), are Lyapunov equations.

Q A2 + Q2 T + BwBw = 0 (6.1)

ATX+ XA + tTc z  0 (6.2)

Consider the following lemma:

Lemma 6.1: Suppose X _> 0, Z > 0, (4Z,A) is detectable and

ATX + XA + Z =0

Then A is stable.

Moreover, X > 0 iff (/Z,A) is observable.

Proof: For the first conclusion, see ([Won85,283-284], Theorem 12.2).

For the second conclusion, see ([Won85,58], Theorem 3.1).
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Consider the SISO example. It was discovered that in every case examined, both

X and Q2 were positive definite. Therefore, by Lemma 6.1 and its dual, it

follows that (A,Bu) is controllable and (Cy,A) is observable. In the SISO

example, (A,Bu) is controllable and (Cy,A) is observable. It follows, then, that

the compensator is also controllable and observable (i.e. it has a minimal

realization). It was interesting to note, however, that while all the eigenvalues

of X and Q2 were positive and nonzero, usually only three had significant

magnitude. Most of the rest of the eigenvalues were very close to zero. This

corroborates with the earlier observation that many of the higher order

compensator poles had zeros almost right on top of them and yet, due to oo-norm

bound, the pole/zero cancellations could not actually be made. If it is true that

the mixed solution is indeed a minimal realization for orders up to infinity, it

would follow that the optimal order of the mixed H2/H, solution is infinity.

6.2 Recommendations for Future Research

Obviously, the complete proof of optimal order remains to be shown. This

work has shed some light on this subject, but it will require further research

before a final answer can be given to the question of optimal order.

This research dealt completely with compensators whose order is greater than

the order of the plant. As mentioned at the beginning of this thesis, the more

practical research would be in the area of reduced order compensators. This is

a much more difficult area of study, but it will be interesting to see the plot of
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a* versus compensator order completed by extending it below the order of the

plant.

One issue that was looked at (but not resolved) is the problem of uniqueness

of the solution. Recall that one of the necessary conditions in the general mixed

problem is a Lyapunov equation with no constant term. The only way to get a

nonzero solution to this equation is by requiring its "A" matrix to be neutrally

stable. However, this leads to an infinite number of solutions of varying rank.

It is not clear which of these solutions should be chosen or why the numerical

solution converges to one solution over another. In terms of looking at the

characteristics of higher order solutions, nonuniqueness of the solution does not

cause much trouble. All the solutions that were obtained are valid and the plots

shown in Chapter V are correct. However, when talking about optimal order,

nonuniqueness of the solution is a problem. If there is a family of solutions to

the mixed problem, it may be true that a different (full order or smaller increased

order) compensator could achieve the same results as the higher order controllers

shown here.

Research needs to continue into finding a closed-form solution to the mixed

problem. It may be true that no closed-form solution exists. If this is the case,

a more time efficient method for numerically solving the problem needs to be

developed. Some of the higher order solutions literally took one to two weeks

of almost continuous run time for a single solution. Before mixed H2/H. can
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become a useful design method from a practical standpoint, further research into

solution algorithms is required.

6.3 Summary

In this thesis, the effects of using higher order compensators in mixed H2/H,

have been investigated. The mixed problem in general has been discussed and

the motivations for performing mixed H2/H,, optimization have been presented.

The issue of why higher order controllers are important was addressed and the

optimal orders of related optimization problems were shown. Then, the general

mixed problem was developed using a Lagrange multiplier technique. The

necessary conditions for a minimum were derived and examined. Next, due to

numerical difficulties in solving the true mixed problem, a suboptimal problem

was developed and new necessary conditions given. After showing some key full

order results, theoretical results for the higher order case were presented. In

particular, the key proofs that were given include: the global minimum 2-norm

is unachievable under output feedback for certain levels of -Y regardless of

compensator order; the solution to the mixed problem lies on the boundary of the

o,-norm constraint for this same range of y's; and, the suboptimal mixed

problem converges to the optimal in the limit for higher order compensators.

Then, numerical SISO and MIMO examples were examined. It was seen that

higher order compensators do produce a lower 2-norm and they are better able

to recover to the H2 solution than the full order controllers. Finally, based on
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the results from the numerical examples, it was conjectured that the optimal order

of the mixed solution is infinite.
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Appendix: FORTRAN Source Code of
DFP Algorithm

This appendix contains the FORTRAN source code for the Davidon-

Fletcher-Powell numerical algorithm used to solve the mixed H2/H*

optimization problem. All code required to run the program is included here

except for the Riccati equation solver and eigenvalue solver routines. These

routines are readily available as public domain software. The calls to these

routines, which will need to be modified depending on the software used, are

in the subroutine EVALUF and are marked by bold italics.

Below is a summary of the routines included:

Name Description page

DIMEN.INC Separate file containing array dimensions A-2
DFP Main program A-3
INPDAT Inputs system data A-6
INITGS Inputs initial guess for compensator A-10
FINDAL Calculates DFP Alpha star A-12
UPDATH Updates the H matrix and S vector A-16
CKSTOP Determines if solution is converged A-18
WRITER Writes ouput data to RESET file A-19
EVALUF Evaluates the value of the cost function A-2 1
EVDELF Evaluates the derivatives of Laplacian A-30
INPUT.DAT Sample input file A-35
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C
C THIS FILE SHOULD BE 'INCLUDE'D IN THE DFP PROGRAM. IT CONTAINS
C ALL THE ARRAY SIZES NEEDED IN THE DFP DECLARATIONS.
C
C ISTATE = LENGTH OF SYSTEM STATE VECTOR
C KSTATE = LENGTH OF COMPENSATOR STATE VECTOR
C
C NUMBD = LENGTH OF EXOGENOUS INPUT VECTOR D
C NUMBW = LENGTH OF EXOGENOUS INPUT VECTOR W
C NUMBU = LENGTH OF CONTROLLED INPUT VECTOR U
C
C NUMBE = LENGTH OF CONTROLLED OUTPUT VECTOR E
C NUMBZ = LENGTH OF CONTROLLED OUTPUT VECTOR Z
C NUMBY = LENGTH OF MEASURED OUTPUT VECTOR Y

********************************************* **** ********

C
INTEGER ISTATE,KSTATE,NUMBD,NUMBW,NUMBU,NUMBE,NUMBZ,NUMBY,

TILDIM,NUMB
C

PARAMETER (ISTATE = 3,
KSTATE = 18,
NUMBD = 1,
NUMBW = 1,
NUMBU = 1,
NUMBE = 1,
NUMBZ = 1,
NUMBY = 1)

PARAMETER
(TILDIM = ISTATE+KSTATE,
NUMB = (KSTATE*KSTATE) + (NUMBU*KSTATE) +

(NUMBY*KSTATE))
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C This program uses the Davidon-Fletcher-Powell C
C numerical optimization algorithm to solve the C
C suboptimal mixed H2/Hinf/Entropy optimization C
C problem. That is, determine (AC,BC,CC) that C
C minimizes the cost functional: C
C C
C J = (1-AMU)*tr(Q2*CZ'*CZ) + AMU*tr(QINF*CE'*CE) C
C C
C where 0.0< AMU <1.0 C
C C
C and Q2 is the real, symmetric, positive semidefinite C
C solution to the Lyapunov equation: C
C ATIL*Q2 + Q2*ATIL' + BWTIL*BWTIL' = 0 C
C C
C and such that the Riccati equation: C
C ATIL*QINF + QINF*ATIL' + C
C GAM2INV*QINF*CETIL'*CETIL*QINF + BDTIL*BDTIL' = 0 C
C has a real, symmetric, positive semidefinite solution. C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IMPLICIT REAL*8(A-H,O-Z)
C
C - INCLUDE the file containing all the array dimensions.
C NOTE: The file DIMEN.INC must be modified every time
C there is a change in the size of the system or compensator,
C and this program must be re-compiled.
C

INCLUDE 'DIMEN.INC'
C
C - DFP algorithm variables
C

COMMON/HMATRX/ H(NUMB,NUMB), S(NUMB), DELF(NUMB), DELOLF(NUMB)
COMMON/FLAGS/ IFLAG2, ICNT, TOLCHK, CHECKSTOP
COMMON/PARAM/ AMU, OMAMU, GAMMA, GAM2INV

C
C - Say lello and set the counters
C

PRINT *,'THE GREAT AND MIGHTY DFP'
PRINT *
PRINT *,'Ahead one-half impulse power, Mr Crusher.'
ICOUNT = 0
JCOUNT = 0
ISTOP = 0

C
C - Open the input and output files
C

OPEN(I,FILE='INPUT.DAT')
OPEN(2,FILE='CHECK.DAT')
OPEN(8,FILE='RESET.DAT')
OPEN(9,FILE='OUTPUT.DAT')

C
C - Input the system matrices and program parameters
C
C PRINT *,'CALLING INPDAT'

CALL INPDAT
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C
C - Input the initial guess for the compensator
C
C PRINT *,'CALLING INITGS'

CALL INITGS
C
C - Evaluate the derivatives of the Lagrangian
C
C PRINT *,'CALLING EVDELF'

CALL EVDELF
C
C - Initialize the vector S
C
C PRINT *,'CALCULATING S'

DO 10 I=l,NUMB
SUM=O.ODO
DO 20 J=l,NUMB

SUM=SUM-H(I,J)*DELF(J)
20 CONTINUE

S(I)=SUM
10 CONTINUE

C
C - Initialize ALPHA STAR
C

ALSTAR = 1.OD-08
C
C - All inputs and initializations are complete. Begin the
C iterations.
C

PRINT *,'Engage...
PRINT *
PRINT *

C
C >>> This is the return point for the iteration <<<
C

30 CONTINUE
C
C - Update the counters
C

ICOUNT=ICOUNT+1
JCOUNT=JCOUNT+1

C
C - Calculate ALPHA STAR, the step size in the S direction which
C minimizes the function
C
C PRINT *,'CALLING FINDAL'

CALL FINDAL(ALSTAR,FSTAR)
C
C - Save current derivatives into last-pass derivatives
C

DO 40 Il,NUMB
DELOLF(I)=DELF(I)

40 CONTINUE
C
C - Evaluate the derivatives of the Lagrangian
C

CALL EVDELF
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C
C - Update the variables H and S
C

CALL UPDATH (ALSTAR)
C
C - Check for convergence of the solution
C

CALL CKSTOP( ISTOP, FSTAR)
C
C - Write updates to user terminal every iteration
C

WRITE(*, 50) KSTATE,GAMMA,ALSTAR,FSTAR,
+ ICOUNT, AMU, CHECKSTOP
WRITE(2, 50)KSTATE,GAMMA,ALSTAR,FSTAR,

+ ICOUNT, AMU, CHECKSTOP
50 FORMAT(/,12,' State (gam=',F7.4,')',El9.l0,Fl7.8,

+1 -- >>> 1,13,/,2X,l (mu= ',F7.5,')',
+' CHECKSTOP:',E19.8)

C
C - write data to output files every 10 iterations
C

IF(JCOUNT.GE. 10)THEN
WRITE(9, *)
WRITE(9,*) 'OUT OF FINDAL' ,ALSTAR,FSTAR,

+ I ITERATION',ICOUNT
CALL EVALUF (FTEMP)
WRITE(9,60) (DELF(II),II=l,NUMB)

60 FORMAT(4E20.12)
CALL WRITER( ICOUNT)
JCOUNT=0

END IF
C
C - Check for completion of the program (quit after 300 iterations
C if no solution has been reached)
C

IF(ICOUNT.LT.300.AND. ISTOP.NE. 1) GOTO 30
C
C -Write final results to the output files
C

WRITE(9,*)
WRITE(9,*) 'FINAL VALUES OF THE DERIVATIVES:
WRITE(9,60) (DELF(II),II=l,NUMB)
CALL WRITER( ICOUNT)
PRINT*, '* * * * * * * * * * * * * * * * * * * * * * * * * * **^^AAA AA^^ A^A

C
C -Clean up shop anO go home
C

CLOSE(l)
CLOSE (2)
CLOSE (8)
CLOSE(9)
STOP
END
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCV'CCCCCCCCCC
C C
C INPDAT C
C C
C This subroutine reads the data for the system state- C
C space matrices and the program parameters from an C
C input file c
C C
CCcCcccccccccccccccccccCCCCcccCCcccC~CCCCCcCCCCCCCcCcCCCcc

SUBROUTINE INPDAT
IMPLICIT REAL*8(A-H,O-Z)
CHARACTER*50 CHAR

C
C -INCLUDE the file containing all the array dimensions.
C NOTE: The file DIMEN.INC must be modified every time
C there is a change in the size of the system or compensator,
C and this subroutine must be re-compiled.
C

INCLUDE 'DIMEN.INC'
C
C -State space system matrices
C

COMMON/SYSTEM!
*A(ISTATE,ISTATE),
*BU(ISTATE,NUMBU), BD(ISTATE,NUMBD), BW(ISTATE,NUMBW),
*CY(NUMBY,ISTATE), CE(NUMBE,ISTATE), CZ(NUMBZ,ISTATE),
*DYD(NUMBY,NUMBD), DYW(NUMBY,NUMBW), DEU(NUMBE,NUMBU),
*DZU(NUMBZ,NJMBU)

C
C - optimization parameters
C

COMMON/PARAM/ AMU, OMAMU, GAMMA, GAM21NV
C
C - DFP algorithm variables
C

COMMON/HMATRX/ H(NUMB,NUMB), S(NUMB), DELF(NUMB), DELOLF(NUMB)
COMMON/MATRIX/ XMATOL(NUMB), TOLSER
COMMON/FLAGS! IFLAG2, ICNT, TOLCHK, CHECKSTOP

C
C - Format statements
C
500 FORMAT(A50)
510 FORM.AT(817)
520 FORMAT(2D11.3)
530 FORMAT(lD11.3)
540 FOR1MAT(8E15.5)
541 FORMAT(8E15.5)

C
C - All inputs that are read from the input file are echoed
C to the output files.
C
C - Input/output the title
C

READ(1,500) CHAR
WRITE(9,500) CHAR
WRITE(8,500) CHAR
READ(1,500) CHAR
WRITE(9,500) CHAR
WRITE(8,500) CHAR
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C
C - Input/output the dimensions of the matrices
C NOTE: Dimensions are not really input here; they are in the
C INCLUDE file. They appear here for convenience.
C

READ(1,500) CHAR
WRITE(8,500) CHAR
READ(1,500) CHAR
.,TTE(8,500) CHAR
READ(1,500) CHAR
WRITE(8,510) ISTATE,KSTATE,NUMBU,NUMBY,NUMBD,NUMBE,NUMBW,NUMBZ

C
C - Input/output the parameters GAMMA and AMU
C

READ(l,500) CHAR
WRITE(8,500) CHAR
READ(1,500) CHAR
WRITE(8,500) CHAR
READ(I,520) GAMMA,AMU
WRITE(8,520) GAMMA,AMU
GAM2INV = 1.ODO/(GAMMA*GAMMA)
OMAMU = 1.ODO - AMU

C
C - Input/output the tolerance for the 1-D search and checkstop
C

READ(1,500) CHAR
WRITE(8,500) CHAR
READ(1,500) CHAR
WRITE(8,500) CHAR
READ(1,520) TOLSER,TOLCHK
WRITE(8,520) TOLSER,TOLCHK

C
C - Input/output the system A matrix
C

READ(1,500) CHAR
WRITE(8,500) CHAR
READ(1,500) CHAR
WRITE(8,500) CHAR
DO 10 I=1,ISTATE

READ(1,540) (A(I,J),J=1,ISTATE)
WRITE(8,541) (A(I,J),J=1,ISTATE)

10 CONTINUE
C
C - Input/output the system BU matrix
C Note: Input file contains BU transpose
C

READ(1,500) CHAR
WRITE(8,500) CHAR
READ(1,500) CHAR
WRITE(8,500) CHAR
DO 20 I=1,NUMBU

READ(I,540) (BU(J,I),J=1,ISTATE)
WRITE(8,541) (BU(J,I),J=I,ISTATE)

20 CONTINUE
C
C - Input/output the system BD matrix
C Note: Input file contains BD transpose
C

READ(1,500) CHAR
WRITE(8,500) CHAR
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READ(l,500) CHAR
WRITE(8,500) CHAR
DO 30 I=l,NUMBD

READ(l,540) (BD(J,I),J=l,ISTATE)
WRITE(8,541) (BD(J,I) ,J=l,ISTATE)

30 CONTINUE
C
C - Input/output the system BW matrix
C Note: Input file contains BW transpose
C

READ(l,500) CHAR
WRITE(8,500) CHAR
READ(l,500) CHAR
WRITE(8,500) CHAR
DO 40 I=l,NUMBW

READ(l,540) (BW(J,I) ,J=l,ISTATE)
WRITE(8,541) (BW(J,I) ,J=l,ISTATE)

40 CONTINUE
C
C - Input/output the system CY matrix
C

READ(l,500) CHAR
WRITE(8,500) CHAR
READ(1,500) CHAR
WRITE(8,500) CHAR
DO 50 I=1,NUMBY

READ(1,540) (CY(I,J) ,J=l,ISTATE)
WRITE(8,541) (CY(I,J) ,J=l,ISTATE)

50 CONTINUE
C
C - Input/output the system CE matrix
C

READ(1,500) CHAR
WRITE(8,500) CHAR
READ(l,500) CHAR
WRITE(8,500) CHAR
DO 60 I=l,NUMBE

READ(l,540) (CE(I,J),J=l,ISTATE)
WRITE(8,541) (CE(I,J) ,J=1,ISTATE)

60 CONTINUE
C
C - Input/output the system CZ matrix
C

READ(l,500) CHAR
WRITE(B,500) CHAR
READ(l,500) CHAR
WRITE(8,500) CHAR
DO 70 I=l,NUMBZ

READ(1,540) (CZ(I,J),J=l,ISTATE)
WRITE(8, 541) (CZ(I,J) ,J=l, ISTATE)

70 CONTINUE
C
C - Input/output the system DYD matrix
C

READ(1,500) CHAR
WRITE(8,500) CHAR
READ(1,500) CHAR
WRITE(8,500) CHAR
DO 80 I=1,NUMBY

READ(1,540) (DYD(I,J) ,J=1,NUMBD)
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WRITE(8,541) (DYD(I,J) ,J=1,NUMBD)
80 CONTINUE

C
C - Input/output the system DYW mnatrix
C

READ(1,500) CHAR
WRITE(8,500) CHAR
READ(1,500) CHAR
WRITE(8,500) CHAR
DO 90 I=1,NUMBY

READ(1,540) (DYW(I,J),J=1,NUMBW)
WRITE(8,541) (DYW(I,J) ,J=1,NUMBW)

90 CONTINUE
C
C - Input/output the system DEU matrix
C

READ(1,500) CHAR
WRITE(8,500) CHAR
READ(14,500) CHAR
WRITE(8,500) CHAR
DO 100 I=1,NUMBE

READ(1,540) (DEU(I,J) ,J=1,NUMBU)
WRITE(8,541) (DEU(I,J) ,J=1,NUMBU)

100 CONTINUE
C
C - Input/output the system DZU matrix
C

READ(1,500) CHAR
WRITE(8,500) CHAR
READ(1,500) CHAR
WRITE(8,500) CHAR
DO 110 I=1,NUMBZ

READ(1,540) (DZU(I,J),J=1,NUMBU)
WRITE(8,541) (DZU(I,J) ,J=1,NUMBU)

110 CONTINUE
C
C - Initialize the H matrix to the identity
C

DO 120 I=1,NUMB
DO 120 J=1,NUMB

H(I,J)=0.ODO
IF( I.EQ.J)H( I,J)=1.ODO

120 CONTINUE
RETURN
END
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C IN ITGS C
C C
C This subroutine reads the data for the initial guess C
C of the state-space compensator matrices from an C
C input file C
C C
CCCCccccccccCcCCCCCCCCCcCcCCCCCCCCccccC~CCcCcCCCCCCCCCCcc

SUBROUTINE INITGS
IMPLICIT REAL*8(A-H,O-Z)
CHARACTER*50 CHAR

C
C - INCLUDE the file containing all the array dimensions.
C NOTE: The file DIMEN.INC must be modified every time
C there is a change in the size of the system or compensator,
C and this subroutine must be re-compiled.
C

INCLUDE 'DIMEN. INC'
C
C - Compensator system matrices
C

COMMON/COMP/ AC (KSTATE, KSTATE), BC (KSTATE, NUMBY),
CC(NUMBU,KSTATE)

C
500 FORMAT(A5O)
510 FORMAT(4D19.11)

C
C - Input the AC matrix
C

IDONE=0
J2 = 0
DO 5 WHILE(IDONE.EQ.O)

Ji = J2+1
J2 = J1+3
IF (J2.GE.KSTATE) THEN

J2 = KSTATE
IDONE = 1

ENDIF
READ(l,500) CHAR
WRITE(9,500) CHAR
READ(1,500) CHAR
WRITE(9,500) CHAR
DO 10 I=l,KSTATE

READ(1,510) (AC(I,J) ,J=Jl,J2)
WRITE(9,510) (AC(I,J),J=Jl J2)

10 CONTINUE
5 CONTINUE

C
C - Input the BC matrix (NO TRANSPOSE)
C

READ(1,500) CHAR
WRITE(9,500) CHAR
READ(1,500) CHAR
WRITE(9,500) CHAR
DO 20 1=1,KSTATE

READ(1,510) (BC(I,J),J=1,NUMBY)
WRITE(9,510) (BC(I,J),J=1,NUMBY)

20 CONTINUE
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C
C -Input the CC matrix
C

IDONE = 0
J2 = 0
Do 35 WHILE(IDONE.EQ.0)

Ji = J2+1
J2 = J1+3
IF (J2.GE.KSTATE) THEN

J2 =KSTATE
IDONE = 1

ENDIF
READ(1,500) CHAR
WRITE(9,500) CHAR
READ(1,500) CHAR
WRITE(9,500) CHAR
DO 30 I=1,NU4BU

READ(1,510) (cc(I,J) ,j=jl,j2)
WRITE(9,510) (Cc(I,J) ,j=j1,j2)

30 CONTINUE
35 CONTINUE

RETURN
END
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C FINDAL C
C C
C The subroutine calculates the ALPHA that minimizes C
C the function F(X + ALPHA*S) c
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcCCCc

SUBROUTINE FINDAL (ALSTAR, FSTAR)
IMPLICIT REAL*8(A-H,O-Z)

C
C - INCLUDE the file containing all the array dimensions.
C NOTE: The file DIMEN.INC must be modified every time
C there is a change in the size of the system or compensator,
C and this subroutine must be re-compiled.
C

INCLUDE 'DIMEN.INC'
C
C - DFP algorithm variables
C

COMMON/MATRIX/ XMATOL(NUMB), TOLSER
COMMON/HMATRX/ H(NUMB,NUMB), S(NUMB), DELF(NUMB), DELOLF(NUMB)

C
C -Compensator system matrices
C

COMMON/COMP/ AC(KSTATE,KSTATE), BC(KSTATE,NUMBY),
+ CC(NUMBU,KSTATE)

C
C
C -XMAT is a vector containing the matrices AC, BC, and CC
C

DIMENSION XMAT(NUMB)
EQUIVALENCE (XMAT(l),AC(l,1))
EQUIVALENCE (XMiAT(KSTATE*KSTATE+1) ,BC(l,l))
EQUIVALENCE (XMAT(KSTATE*KSTATE+KSTATE-NUMBY+1) ,CC( 1,1))

C
C -Save last-pass XMAT vector
C

DO 10 I=l,NUMB
XMATOL (I )=XMAT (I)

10 CONTINUE
C
C - Initialize starting ALPHA to last-pass ALPHA STAR
C

SHIFT=ALSTAR
C
C - Identify an initial region
C

II =0
Do 30 I=1,3

C PRINT *,'I =',
ALPHA= (I-i) *SHIFT
DO 40 J=1,NUMB

C PRINT *,'XMATOL:',JXMATOL(J)
XMAT(J)=XMATOL(J)+ALPHA*S (J)

C PRINT *,'XMAT(J) =',J,XMAT(J)
40 CONTINUE

CALL EVALUF(FF)
C PRINT *,'FUNCTION = ',FF
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C
C -Identify three points in the region
C

IIII +1
IF (II.EQ.1) THEN

F0=FF
Fl = FF
ALPHA1 = ALPHA

C PRINT *,'F1,ALPHA1:',Fl,ALPHA1
ELSE IF (II.EQ.2) THEN

F2 = FF
ALPHA2 = ALPHA

C PRINT *,'F2,ALPHA2:',F2,ALPHA2
ELSE

F3 = FF
ALPHA3 = ALPHA

C PRINT *,'F3,ALPHA3:',F3,ALPHA3
END IF

30 CONTINUE
C
C -Expand upper bound until the minimizing ALPHA is within the
C region
C

DO 35 WHILE (F3.LT.F2)
F2 = F3
ALPHA2 = ALPHA3
ALPHA3 = ALPHA3 * 2.ODOO
DO 36 I=1,NUMB

XMAT(I) = XMATOL(I) + ALPHA3 * (I)
36 CONTINUE

CALL EVALUF(F3)
35 CONTINUE

C
C - Return point if the ALPHA needs refining
C

50 CONTINUE
C WRITE(2, 1000) ALPHA1,ALPHA2,ALPHA3,ALPHA4,ALPHA5,

+ F1,F2,F3,F4,F5
C1000 FORMAT(5E16.5, /,5F16. 10,!)
C
C - Determine which region contains the min
C

IF( Fl. LT.F2 )THEN
C WRITE(2,1001) ALPHA1,ALPHA2,ALPHA3,ALPHA4,ALPHA5,

+ F1,F2,F3,F4,F5
C1001 FORMAT(1 '1,5E16.5,/,5F16.10,/)
C
C - The min definitely lies between ALPHA1 and ALPHA2, shrink the
C search area
C ALPHA1 ---- HERE---- ALPHA2--------------- ALPHA3
C

ALPHA3=ALPHA2
ALPHA2- (ALPHA3-ALPHA1) /2. ODO
F3 - F2
DO 60 I=l,NUMB

XMAT(I) = XMATOL(I) + ALPHA2 * (I)
60 CONTINUE

CALL EVALUF(F2)
ELSE
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C WRITE(2, 1002) ALPHA1,ALPHA2,ALPHA3,ALPHA4,ALPHA5,
+ Fl,F2,F3,F4,F5

C1002 FORMAT( '2 ',5E16.5,/,5Fl6.10,/)
C
C - The min lies to the left or right of ALPHA2, determine which
C side
C

ALPHA4=(ALPHA2-ALPHAl) /2. ODO+ALPHAl
DO 90 I=1,NUMB

XMAT( I)=XMATOL( I)+ALPHA4*S(I)
90 CONTINUE

CALL EVALUF(F4)
IF(F4.LT.F2)THEN

C
C - The min lies between ALPHA1 and ALPHA2
C ALPHA1 ---- HERE---- ALPHA2--------------- ALPHA3
C

ALPHA3 =ALPHA2
ALPHA2 =ALPHA4
F3 = F2
F2 =F4

C WRITE(2, 1003) ALPHA1,ALPHA2,ALPHA3,ALPHA4,ALPHA5,
+ Fl,F2,F3,F4,F5

C1003 FORMAT( '3 ',5El6.5,/,5F16.10,/)
ELSE

ALPHA5= (ALPHA3-ALPHA2) /2. 0D0+ALPHA2
DO 100 I=l,NUMB

XMAT( I) =XMATOL( I) +ALPHA5*S (I)
100 CONTINUE

CALL EVALUF(F5)
IF(F5.LT.F2)THEN

C,
C - The min lies between ALPHA2 and ALPHA3
C ALPHAl-------------- ALPHA2 ---- HERE------ ALPHA3
C

ALPHA1 =ALPHA2
ALPHA2 =ALPHA5
Fl = F2
F2 = F5

C WRITE(2, 1004) ALPHA1,ALPHA2,ALPHA3,ALPHA4,ALPHA5,
+ F1,F2,F3,F4,F5

C1004 FORMAT('4 ',5E16.5,/,5F16.1O,/)
ELSE

C
C - The min lies between ALPHA 4 and ALPHA 5
C ALPHA1 ---- ALPHA4--- HERE --- ALPHAS5------ALPHA3
C

ALPHA1=ALPHA4
ALPHA3=ALPHA5
Fl = F4
F3 = F5

C WRITE(2, 1005) ALPHA1,ALPHA2,ALPHA3,ALPHA4,ALPHAS,
+ Fl,F2,F3,F4,F5

C1005 FORMAT( '5 ',5El6.5,/,5F16.10,/)
END IF

END IF
END IF
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C
C - Check for converence on ALPHA
C

IF(ABS( (ALPHA2-ALPHA1) /ALPHA2) .GT.TOLSER)GOTO 50
C
C - Update XMAT using new ALPHA STAR
C

ALSTAR=ALPHA1
IF(F2.LT.Fl)THEN

IF(F3.LT.F2)THEN
ALSTAR=ALPHA3

ELSE
ALSTAR=ALPHA2

ENDIF
ELSE

IF(F3.LT.Fl)THEN
ALSTAR=ALPHA3

END IF
ENDIF
DO 110 1=1,NUMB

XMAT( I)=XMATOL( I)+ALSTAR*S (I)
110 CONTINUE

CALL EVALUF (FSTAR)
RETURN
END
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C UPDATH c
C C
C This subroutine updates the variables H and S C
C C
CCCCCCCCCCCCCCCCCCcccccccccCCCCCCCCCCCCCCcccCcCCCCcCCCc

SUBROUTINE UPDATH (ALSTAR)
IMPLICIT REAL*8(A-H,O-Z)

C
C - INCLUDE the file containing all the array dimensions.
C NOTE: The file DIMEN.INC must be modified every time
C there is a change in the size of the system or compensator,
C and this subroutine must be re-complied.
C

INCLUDE 'DIMEN.INC'
C
C
C -DFP algorithm variables
C

COMMON/HMATRX/ H(NUMB,NUMB), S(NUMB), DELF(NUMB), DELOLF(NUMB)
DIMENSION Z(NUMB), AM(NUMB,NUMB), AN(NUMB,NUMB), HY(NUMB)

C
C -Update Z
C

DO 10 I=1,NUMB
Z (I )=DELF( I)-DELOLF( I)

10 CONTINUE
TR2Z=0.ODO
DO 11 I=1,NUMB

TR2Z=Z( I) *Z(I)
11 CONTINUE

IF(TR2Z.EQ.O.ODO)THEN
ISTOP~l
RETURN

END IF
C
C - Find the denominator for M
C

SUM=0.0D0
DO 20 I=l,NUMB

SUM=SUM+S (I) *Z(I)
20 CONTINUE

FACM=ALSTAR/ SUM
C
C - Store M
C

DO 30 I-1,NUMB
DO 30 J-1,NUMB

AM( I,J)=S(I) *S(J) *FACM
30 CONTINUE

C
C - Find the denominator for N
C

SUM=0. ODO
DO 40 I=l,NUMB

DO 40 J-l,NUMB
SUM=SUM+Z(I)*H(I,J) *Z(J)

40 CONTINUE
FACN--SUM
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C
C - Calculate N
C

DO 50 I=1,NUMB
SUM=0.0D0
DO 60 J=1,NUMB

SUM=SUM+H(I,J) *Z(J)
60 CONTINUE

HY (I )=SUM
50 CONTINUE

DO 70 1=1,NUMB
DO 70 J=1,NUMB

AN(I,J)=HY(I)*HY(J)/FACN
70 CONTINUE

C
C - Update H
C

DO 80 I=1,NUMB
DO 80 J=1,NUMB

H( I,J) =H( I,J) +AM( I, J)+AN( I,J)
80 CONTINUE

C
C - Update S
C

DO 90 I=1,NUMB
SUM=0. ODO
DO 100 J=l,NUMB

SUM=SUM-H( I,J) *DELF(J)
100 CONTINUE

S (I) =SUM
90 CONTINUE

C
C - Check to insure H direction will decrease function
C

SUM=0. aDO
DO 200 I=1,NUMB

SUM=SUM+S( I) *DELF(I)
200 CONTINUE

IF(SUM.GT. 0.ODO)THEN
WRITE(-,*) 'HAD TO UPDATE H'
WRITE(9,*) 'HAD TO UPDATE H!'
DO 210 I=1,NUk4B

DO 210 J=1,NUMB
H(I,J)20.ODO
IF(I.EQ.J)H(I,J)=l.ODO

210 CONTINUE
C
C - Update S
C

DO 290 I=1,NUMB
SUk4=0.ODO
DO 300 J=1,NUMB

SUM-SUM-H(I,J) *DELF(J)
300 CONTINUE

S (I ) SUM
290 CONTINUE

END IF
RETURN
END
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C CKSTOP C
C C
C This subroutine determines if the solution converged C
C C
CCccccCCCCcCCCCCCCCCcccCCCCCCCCccccccccccCCCCCCcCCccCCCc

SUBROUTINE CKSTOP (ISTOP, FSTAR)
IMPLICIT REAL*8(A-H,O-Z)

C
C - INCLUDE the file containing all the array dimensions.
C NOTE: The file DIMEN.INC must be modified every time
C there is a change in the size of the system or compensator,
C and this subroutine must be re-compiled.
C

INCLUDE 'DIMEN.INC'
C
C -DFP algorithm variables
C

COMMON/HMATRX/ H(NUMB,NUMB), S(NUMB), DELF(NUMB), DELOLF(NUMB)
COMMON/FLAGS/ IFLAG2, ICNT, TOLCHK, CHECKSTOP

C
C -Set the STOP flag to zero
C

I STOP=O
TR2Z=O.ODO
DO 21 I=l,NUMB

TR2Z=(DELF(I)-DELOLF(I))*(DELF(I)-DELOLF(I))
21 CONTINUE

IF(TR2Z .EQ. 0.ODO)THEN
ISTOP=l
RETURN

END IF
C
C - Calculate the magnitude of the residuals
C

SUM=O. ODO
DO 10 I=1,NUMB

DO 10 J=1,NUMB
SUM=SUM+DELF(I) *H(IJ) *DELF(J)

10 CONTINUE
CHECKSTOP = ABS(SUM/FSTAR)
IF (CHECKSTOP. LT. TOLCHK) ISTOP=l
RETURN
END
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C WRIER C
C C
C This subroutine writes output date to the RESET file C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE WRITER
IMPLICIT REAL*8(A-H,O-Z)

C
C - INCLUDE the file containing all the array dimensions.
C NOTE: The file DIMEN.IND must be modified every time
C there is a change in the size of the system or compensator,
C and this subroutine must be re-complied.
C

INCLUDE 'DIMEN.INC'
C
C - Compensator system matrices
C

COMMON/COMP/ AC(KSTATE,KSTATE), BC(KSTATE,NUMBY),
+ CC(NUMBU, KSTATE)

C
C - DFP algorithm variables
C

COM4MON/HMATRX/ H(NUMB,NUMB), S(NUMB), DELF(NUMB), DELOLF(NUMB)
C
C - Assorted and various variables
C

COMMON/OUTDAT/ TRACE, TWONOR4
C
500 FORMAT(A50)
501 FORM4AT(/,' THE AC MATRIX (COLUMNS 1,13,1 - ,31)
502 FORMAT(/,' THE BC MATRIX')
503 FORMAT(/,' THE CC MATRIX (COLUMNS 1,13,1 --,311
510 FORMAT(4D19.11)

C
C - Output the AC matrix
C

IDONE = 0
J2 = 0
DO 10 WHILE(IDONE.EQ.0)

Ji = J2+1
J2 = jl+3
IF (j2.GE.KSTATE) THEN

J2 = KSTATE
IDONE = 1

END IF
WRITE(8,501) Jl,j2
DO 20 I=l,KSTATE

WRITE(8,510) (AC(I,J) ,J=Jl,J2)
20 CONTINUE
10 CONTINUE

C
C - Output the BC matrix (NO TRANSPOSE)
C

WRITE(8,502)
DO 30 I=1,KSTATE

WRITE(8,510) (BC(I,J) ,J=1,NUMBY)
30 CONTINUE
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C
C - output the CC matrix
C

IDONE = 0
J2 = 0
DO 40 WHILE(IDONE.EQ.0)

Ji = J2+1
J2 = J1+3
IF (J2.GE.KSTATE) THEN

J2 = KSTATE
IDONE = 1

ENDIF
WRITE(8,503) J1,J2
DO 50 I=1,NUMBU

WRITE(8,510) (CC(I,J),J=JI,J2)
50 CONTINUE
40 CONTINUE

C
WRITE(9,*) 'The two norm is',TWONORM
WRITE(*,*) 'The two norm is',TWONORM
RETURN
END
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CCCccccccccCC~CCCCCCCCcCCcCCccccccccCcccCCcCccc~cCCCCCCCC~
C C
C EVALUF C
C C
C This s ubroutine evaluates the value of the cost C
C function c
C C
CCCCCCCCccCCccCCCcccccccccccccccCCCCcCCCcccCCCCCCcCCCCCcC

SUBROUTINE EVALUF (FU)
IMPLICIT REAL*8(A-H,O-Z)

C
C - INCLUDE the file containing all the array dimensions.
C NOTE: The file DIMEN.INC must be modified every time
C there is a change in the size of the system or compensator,
C and this subroutine must be re-compiled.
C

INCLUDE 'DIMEN.INC'
C
C -State space system matrices
C

COMMON/SYSTEM/
* A(ISTATE,ISTATE),
* BU(ISTATE,NUMBU), BD(ISTATE,NUMBD), BW(ISTATE,NUMBW),
* CY(NUMBY,ISTATE), CE(NUMBE,ISTATE), CZ(NUMBZ,ISTATE),
* DYD(NUMBY,NUMBD), DYW(NUMBY.NUMBW), DEU(NUMBE,NUMBU),
* DZU(NUMBZ,NUMBU)

C
b Tilde matrices
C

COMMON /QTWOTL /
* QTWO1(ISTATE,ISTATE), QTWO12(ISTATE,KSTATE),
* QTWO21 (KSTATE, ISTATE), QTWO2 (KSTATE,KSTATE)

COMMON/QINFTL/
* QINFl(ISTATE,ISTATE), QINF12(ISTATE,KSTATE),
* QINF21(KSTATE,ISTATE), QINF2(KSTATE,KSTATE)

COMMON! XTL/
* XTL1(ISTATE,ISTATE), XTL12(ISTATE,KSTATE),
* XTL21 (KSTATE, ISTATE), XTL2 (KSTATE,KSTATE)

COMMON! YTL/
* YTL1(ISTATE,ISTATE), YTL12(ISTATE,KSTATE),
* YTL21(KSTATE, ISTATE), YTL2 (KSTATE,KSTATE)

C
C -Compensator syotem matrices
C

COMMON/COMP/ AC(KSTATE,KSTATE), BC(KSTATE,NUMBY),
+ CC(NUMBU,KSTATE)

C
C - optimization parameters
C

COMMON!PARAM/ AMU, OMAMU, GAMMA, GAM21NV
C
C - DFP algorithm variables
C

COMMON/MATRIX! XMATOL(NUMB), TOLSER
C
C - Riccati solution matrices
C

COMMON/RICINP/
* F(TILDIM,TILDIM), G(TILDIM,TILDIM), H(TILDIM,TILDIM),
* X(TILDIM,TILDIM)
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COMMON/RICSCR/
* Z(4*TILDIM*TILDIM), W(4*TILDIM*TILDIM),
* ER(2*TILDIM), EI(2*TILDIM),
* WORK(2*TILDIM), IND(2*TILDIM)

COl4MON/RSOLN/
* QTLINF(TILDIM,TILDIM), QTLTWO(TILDIM,TILDIM),
* XTILDE(TILDIM,TILDIM), YTILDE(TILDIM,TILDIM)

C
C -Assorted and various variables
C

COMMON/OUTDAT/ TRACE, TWONORM
COMMON/FLAGS/ IFLAG2, ICNT, TOLCHK, CHECKSTOP

C
COMMON/TILDES/ RTLTWO(TILDIM,TILDIM), RTLINF(TILDIM,TILDIM),
* VTLTWO(TILDIM,TILDIM), VTLINF(TILDIM,TILDIM),
* ATIL(TILDIM,TILDIM),

BDTIL(TILDIM,TILDIM) ,BWTIL(TILDIM,TILDIM),
* CETIL(TILDIM,TILDIM), CZTIL(TILDIM,TILDIM)

C

N =TILDIM

NDIM =TILDIM

ICNT ICNT+l
C
C - Calculate ATILDE
C ATIL= (A BU*CC]
C [BC*CY AC]
C

DO 40 I=l,ISTATE
DO 40 J=l,ISTATE

ATIL(I,J) = A(I,J)
40 CONTINUE

DO 41 I=1,KSTATE
DO 41 J=l,KSTATE

ATIL(I+ISTATE,J+ISTATE) =AC(I,J)

41 CONTINUE
DO 42 I=1,ISTATE
DO 42 J=l,KSTATE
SUMi =0.ODO

DO 43 K=l,NUMBU
SUMI = SUMlIBU(I,K)*CC(K,J)

43 CONTINUE
ATIL(I,J+ISTATE) = SUMi

42 CONTINUE
DO 44 I=l,KSTATE
DO 44 J=1,ISTATE
SUM1 = 0.ODO

DO 45 K=1,NUMBY
SUMl = SUM1+BC(I,K)*CY(K,J)

45 CONTINUE
ATIL(I+ISTATE,J) = SUMI

44 CONTINUE
C WRITE(2,*)
C WRITE(2,*)
C WRITE(2,*)'ATIL'
C DO 46 I=l,TILDIM
C WRITE(2, 1000) (ATIL(I,J) ,J=1,TILDIM)
C 46 CONTINUE
1000 FORMAT(10E15.4)
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C
C - Calculate the B TILDES
C
C BDTIL( BD ] BWTIL= BW
C [BC*DYD] (BC*DYW]
C

DO 70 I=l,ISTATE
DO 70 J=1,NUMBD

BDTIL( I, J)=BD( I,J)
70 CONTINUE

DO 72 I=l,ISTATE
DO 72 J=l,NUMBW

BWTIL( I,J)=BW( I,J)
72 CONTINUE

DO 73 I=l,KSTATE
DO 74 J=l,NUMBD

SUMi = 0.ODO
DO 75 K=l,NUMBY

SUMi SUM1+BC(I,K)*DYD(K,J)
75 CONTINUE

BDTIL(I+ISTATE,J) = SUMi
74 CONTINUE

DO 76 J=1,NUMBW
SUM1 = 0.ODO
DO 77 K=1,NUMBY

SUMi SUMl+BC(I,K)*DYW(K,J)
77 CONTINUE

BWTIL(I+ISTATE,J) = SUMi
76 CONTINUE
73 C DNTINUE

C WRITE(2,*)
C WRITE(2,*)'BWTIL'
C DO 78 I=l,TILDIM
C WRITE(2,l000) (BWTIL(I,J) ,J=l,NUMBW)
C78 CONTINUE

C WRITE(2,*)
C WRITE(2,*)'BDTIL'
C DO 79 I=l,TILDIM
C WRITE(2,l000) (BDTIL(I,J) ,J=l,NUMBD)
C 79 CONTINUE
C
C - Calculate the C TILDES
C
C CETIL [ CE DEU*CC] CZTIL = CZ DZU*CC]
C

DO 80 I=1,ISTATE
DO 81 J=1,NUMBE

CETIL(J,I) -CE(JpI)
81 CONTINUE

DO 82 J=1,NUMBZ
CZTIL(J,I) =CZ(J,I)

82 CONTINUE
80 CONTINUE

DO 83 I-1,KSTATE
DO 84 J=1,NUMBE

SUMi - 0.ODO
DO 85 K=1,NUMBU

SUMl= SUM1+DEU(J,K)*CC(K,I)
85 CONTINUE

CETIL(J,I+ISTATE) = SUM1
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84 CONTINUE
DO 86 J=1,NUMBZ

SUM1 = O.ODO
DO 87 K=1,NUMBU

SUMi = SUM1+DZU(J,K)*CC(K,I)
87 CONTINUE

CZTIL(J,I+ISTATE) = SUM1
86 CONTINUE
83 CONTINUE

C WRITE(2,*)
C WRITE(2,*)'CZTIL'
C DO 88 I=1,NUMBZ
C WRITE(2,1000) (CZTIL(I,J),J=1,TILDIM)
C 88 CONTINUE
C WRITE(2,*)
C WRITE(2,*)'CETIL'
C DO 89 I=1,NUMBE
C WRITE(2,1000) (CETIL(I,J),J=1,TILDIM)
C 89 CONTINUE
C
C - Calculate the R TILDES
C
C RTLTWO=CZ TILDE' * CZ TILDE
C RTLINP=CE TILDE' * CE TILDE
C

DO 160 I=1,TILDIM
DO 160 J=1,TILDIM

SUM1=0. ODO
DO 170 K=l,NUMBZ

SUM1=SUMl+CZTIL(K, I) *CZTIL(K,J)
.170 CONTINUE

RTLTWO(I,J)=SUMl
SUMlO0.ODO
DO 180 K=1,NUME

SUM1=SUMl+CETIL(K, I) *CETIL(K,J)
180 CONTINUE

RTLINF(I,J)=SUM1
160 CONTINUE

C WRITE(2,*)
C WRITE(2,*)'RTLTWO'
C DO 181 I=1,TILDIM
C WRITE(2,1000) (RTLTWO(I,J),J=1,TILDIM)
C 181 CONTINUE
C WRITE(2,*)
C WRITE(2,*)'RTLINF'
C DO 182 I=1,TILDIM
C WRITE(2,1000) (RTLINF(I,J),J=1,TILDIM)
C 182 CONTINUE
C
C - Calculate the V TILDES
C
C VTLTWO=BW TILDE * BW TILDE'
C VTLINF=BD TILDE * BD TILDE'
C

DO 190 I-1,TILDIM
DO 190 J=1,TILDIM

SUM1O0.ODO
DO 200 K=1,NUMBW

SUM1=SUM1+BWTIL( I,K) *BWTIL(J,K,
200 CONTINUE
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VTLTWO( I,J) =SUM1
SUM1=0. ODO
DO 210 K=1,NUMBD

SUM1=SUMI +BDTIL(I,K) *BDTIL(J,K)
210 CONTINUE

VTLINF(I,J)=SUMl
190 CONTINUE

C WRITE(2,*)
C WRITE(2,*)'VTLTWO'
C DO 211 I=1,TILDIM
C WRITE(2,1000) (VTLTWO(I,J),J=1,TILDIM)
C 211 CONTINUE
C WRITE(2,*)
C WRITE(2,*)'VTLINF'
C DO 212 I=1,TILDIM
C WRITE(2,1000) (VTLINF(I,J),J=1,TILDIM)
C 212 CONTINUE
C--------------------------------------------------------------------
C
C - Use Riccati solver
C (solving FX +XF-XGX + H 0 FOR X)

IFAIL=0
C
C Q2 SOLUTION
C
C FIX + XF - XGX + H =0
C ATILDE*Q2 + Q2*ATILDE' X*0*X + BW*BW' =0
C thus F=ATILDE'
C G=0
C H=BW*BW'
C
C NOTE: must "start" RICSOL with X=H
C

DO 220 I=1,TILDIM
DO 220 J=1,TILDIM

F(I,J)=ATIL(J,I)
G( I,J)=0.ODO
X( I,J)=VTLTWO( I,J)

220 CONTINUE
C
C - Call Riccati solver for solution to Q2
C
C PRINT *,'CALLING RICSOL 1'

CALL RICCATI SOLVER (output: X)
C PRINT *,'BACK FROM RICSOL 1'
C

DO 230 I=1,TILDIM
DO 230 J=1,TILDIM

QTLTWO( I,J)=X(I,J)
230 CONTINUE

C WRITE(2,*)
C WRITE(2,*)'QTLTWO'
C DO 231 I=l,TILDIM
C WRITE(2,1000) (QTLTWO(I,J),J=1,TILDIM)
C 231 CONTINUE
C
C - Check for stable and unique solution
C

CALL SIGN VALLUE SOLVER (output: ER-real part of eig'a)
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Do 301 I-1,N
C WRITE(2,*) 'Q2 EIGENV-REAL (EIGINDEX)=',I,'EIG=',ER(I)

IF(ER(I).LE.-lE-20) THEN
C PRINT*,'Q2 PROBLEM (EIGINDEX)=',I,'EIG=.,ER(I)

IFAIL=1
GO TO 306

ENDIF
301 CONTINUE

C
C-------------------------------------------------------------------------
C QINF SOLUTION
C
C F'X + XF - XGX + H =0
C ATILDE*QINF + QINF*ATILDEI + QINF*GAM2INV*CE'*CE*QINF + BD*BD'=0
C thus F=ATILDE'
C G=-GAM21NV*CE' *CE
C H=BD*BD'
C
C NOTE: F is the same as for Q2

DO 240 I=1,TILDIM
DO 240 J=1,TILDIM

G(I,J)=-GAM2INV * RTLINF(I,J)
X( I,J)=VTLINF(I,J)

240 CONTINUE
C
C - Call Riccati solver for solution to QINF
C
C PRINT *,'CALLING RICSOL 2'

CALL RXCCA2'I SOLVER (output: X)
C PRINT *,'BACK FROM RICSOL 2'
C

DO 250 I=l,TILDIM
DO 250 J=l,TILDIM

QTLINF( I,J)=X( I,J)
250 CONTINUE

C WRITE(2,*)
C WRITE(2,*)'QTLINF'
C DO 251 I=l,TILDIM
C WRITE(2,1000) (QTLINF(I,J),J=l,TILDIM)
C251 CONTINUE
C
C - Check for stable and unique solution
C

CALL EIGEi'VALUE SOLVER (output: ER-real part of eig's)
DO 302 I=1,N

C WRITE(2,*) 'QINF EIGENV-REAL (EIGINDEX)=',I,'EIG=',ER(I)
IF(ER(I).LE.-lE-20) THEN

C PRINT*,'QINF PROBLEM (EIGINDEX)=',I,'EIG=',ER(I)
IFAIL=l
GO To 306

END IF
302 CONTINUE
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C
C--------------- --------------------
C X LAGRANGE MULTIPLIER SOLUTION
C
C F'X + XF - XGX + H =0
C ATILDE'*X + X*ATILDE - X*0*X + (l-AMU)*CZ'*CZ =0
C thus F=ATILDE
C G=O
C H=(l-AMU)*CZ'*CZ
C
C IF(IFLAG2.EQ.l) THEN

DO 260 I=l,TILDIM
DO 260 J=l,TILDIM

F(I,J)=ATIL(I,J)
G(I,J)0O.ODO
X( I,J)=OMAMU*RTLTWO(I,J)

260 CONTINUE
C
C - Call Riccati solver for solution of XTILDE
C
C PRINT *,'CALLING RICSOL 3'

CALL RICCATI SOLVER (output: X)
C PRINT *,'BACK FROM RICSOL 3'
C

DO 270 I11,TILDIM
DO 270 J=l,TILDIM

XTILDE( I,J)=X( I,J)
270 CONTINUE

C WRITE(2,*)
C WRITE(2,*)'XTILDE'
C DO 271 I=l,TILDIM
C WRITE(2,1000) (XTILDE(I,J),J=1,TILDIM)
C 271 CONTINUE
C END IF
C
C - Check for stable and unique solution
C

CALL RIGENVALUE SOLVER (oumtput: ER-.real part of eig'B)
DO 303 Il1,N

C WRITE(2,*) 'XTILDE EIGENV-REAL (EIGINDEX)=',I,'EIG=',ER(I)
IF(ER(I).LE.-lE-l0) THEN

C PRINT*,'XTILDE PROBLEM (EIGINDEX)=',I,'EIG=',ER(I)
IFAIL~l
GO TO 306

ENDIF
303 CONTINUE

C
C---------------------------------------------------------------------------

C Y LAGRANGE MULTIPLIER SOLUTION
C
C F'X + XF - XGX + H =0
C P'*Y + Y*P - X*0*X + AMU*CE'*CE =0
C where P=ATILDE+(GAM2INV*QINF*CE' *CE)
C thus F=P
C G=0
C H=AMU*CE'*CE
C
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DO 280 I=1,TILDIM
DO 280 J=1,TILDIM

SUM1O0. DO
G(I,J)=O.0D0
X( I,J)=AMU*RTLINF(I,J)
DO 290 K=1,TILDIM

SUM1=SUMl + QTLINF(I,K)*RTLINF(K,J)
290 CONTINUE

SUM1=SUM1*GAM21NV + ATIL(I,J)
F(I,J)=SUM1

280 CONTINUE
C
C - Call Riccati solver for solution to YTILDE
C
C PRINT *,'CALLING RICSOL 4'

CALL RICCATI SOLVER (output: X)
C PRINT *,'BACK FROM RICSOL 4'
C

DO 300 I=1,TILDIM
DO 300 J=1,TILDIM

YTILDE( I,J)=X(I,J)
300 CONTINUE

C WRITE(2,*)
C WRITE(2,*)'YTILDE'
C DO 299 I=1,TILDIM
C WRITE(2,l000) (YTILDE(I,J),J=1,TILDIM)
C 299 CONTINUE
C
C - Check for stable and unique solution
C

CALL EIGEYeVALUE SOLVER (output: ER-real part of eig's)
DO 304 1=1,N

C WRITE(2,*) 'YTILDE EIGENV-REAL (EIGINDEX)=',I,'EIG=',ER(I)
IF(ER(I).LE.-1E-l0) THEN

C PRINT*,'YTILDE PROBLEM (EIGINDEX)'1,I,'EIG=',ER(I)
I FAI L= 1
GO TO 306

ENDIF
304 CONTINUE

CALL EIGEN VALUE SOLVER (output: ER-real part of eig'a)
DO 305 1=1,N

C WRITE(2,*) 'Ast EIGENV-REAL (EIGINDEX)=',I,'EIG=',ER(I)
IF(ER(I).GE.-lE-8) THEN

C PRINT*,'Ast PROBLEM (EIGINDEX)=',I,'EIG=',ER(I)
IFAIL=1
GO To 306

END IF
305 CONTINUE

C
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C - If acceptable solutions were found to the Riccati and Lyapunov
C equations, use these solutions to calculate the function value.
C otherwise, no acceptable solution exists. Set the function
C value to "very big."
C

306 IF(IFAIL.EQ.1)THEN
FU-!B.-r6

ELSE
C
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C
C - Calculate the cost function
C
C PRINT *,'CALCULATING THE COST FUNCTION'

TRACE=0.0D0
SUM=0. 0D0
DO 390 I=1,TILDIM

DO 390 J=1,TILDIM
SUM=SUM+(1.0D0-AMU)*QTLTWO(I,J)*RTLTWO(J,I)

+AMU*QTLINF(I,J)*RTLINF(J, I)
390 CONTINUE

FU=TRACE+ SUM
C WRITE(2,*)
C WRITE(2,l00l) FU
1001 FORMAT(F1O.5)

C
C - Calculate the 2-norm of Tzw
C

SUM=0. ODO
DO 400 I=l,TILDIM

DO 400 J=l,TILDIM
SUM=SUM+QTLTWO (I ,J) *RTLTWO (J, I)

400 CONTINUE
TWONORM = DSQRT(SUM)

END IF
RETURN
END
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CCCCCCCCCCCCccCccccccccccccccCCCCCcCcCCccccCCcccCCCcCCCC
C C
C EVDELF C
C C
C This subroutine evaluates derivatives of the Laplacian C
C with respect to the variable matrices AC, BC, and CC C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE EVDELF
IMPLICIT REAL*8(A-H,O-Z)

C
C -INCLUDE the file containing all the array dimensions.
C NOTE: The file DIMEN.INC must be modified every time
C there is a change in the size of the system or compensator,
C and this subroutine must be re-compiled.
C

INCLUDE 'DIMEN.INC'
DIMENSION ACDER(KSTATE,KSTATE), BCDER(KSTATE,NUMBY),

CCDER (NUMBU, KSTATE)
C
C -State space system matrices
C

COMMON/SYSTEM/
* A(ISTATEISTATE),
* BU(ISTATE,NUMBU), BD(ISTATE,NUMBD), BW(ISTATENUMBW),
* CY(NUMBYISTATE), CE(NUMBE,ISTATE), CZ(NUMBZISTATE),
* DYD(NUMBY,NUMBD), DYW(NUMBY,NUMBW), DEU(NUMBENUMBU),
* DZU(NUMBZ,NUMBU)

C
C -Tilde matrices
C

COMMON /QTWOTL I
* QTWO1(ISTATE, ISTATE), QTWO12(ISTATEKSTATE),
* QTWO21 (KSTATE, ISTATE), QTWO2 (KSTATEKSTATE)

COMMON/QINFTL/
* QINF1(ISTATE,ISTATE), QINF12(ISTATE,KSTATE),
* QINF21(KSTATE,ISTATE), QINF2(KSTATE,KSTATE)

COMMON! XTL/
* XTL1(ISTATEISTATE), XTL12(ISTATE,KSTATE),
* XTL2l (KSTATE, ISTATE), XTL2 (KSTATEKSTATE)

COMMON/YTL/
* YTL1(ISTATEISTATE)f YTL12(ISTATE,KSTATE),
* YTL21(KSTATE, ISTATE), YTL2 (KSTATE,KSTATE)

C
C -Compensator system matrices
C

COM.MON/COMP/ AC (KSTATE, KSTATE), BC (KSTATE, NUMBY),
+ CC(NUMBU,KSTATE)

C
C - Optimization parameters
C

COMMON/PARAM/ AMU, OMAMU, GAMMA, GAM21NV
C
C - DFP algorithm variables
C

COMMON/HMATRX/ H(NUMB,NUMB), S(NUMB), DELF(NUMB), DELOLF(NUMB)
EQUIVALENCE (DELF(l) ,ACDER(1,1))
EQUIVALENCE (DELF(KSTATE*KSTATE+1) ,BCDER( 1,1))
EQUIVALENCE (DELF(KSTATE*KSTATE+KSTATE*NUMBY+1) ,CCDER( 1,3))
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C
C - Riccati solution matrices
C

COMMON/RSOLN/
* QTLINF(TILDIM,TILDIM), QTLTWO(TILDIM,TILDIM),
* XTILDE(TILDIM,TILDIM), YTILDE(TILDIM,TILDIM)

C
C - Assorted and various variables
C

COMMON/FLAGS/ IFLAG2, ICNT, TOLCHK, CHECKSTOP
C---------------------------------------------------------------------------

IFLAG2 = 1
C PRINT *,'CALLING EVALUF FROM EVDELF'

CALL EVALUF(FU)
C PRINT *,'BACK FROM EVALUF'

IFLAG = 0
C
C -Partition the tilde matrices (XTILDE, YTILDE, QTLTWO, QTLINF)
C
C - Partition the 1,1 components
C

DO 10 I=1,ISTATE
DO 10 J=l ISTATE

XTLl(I:J) = XTILDE(I,J)
YTL1(I,J) = YTILDE(I,J)
QTW0l(I,J) = QTLTWO(I,J)
QINF1(I,J) = QTLINF(I,J)

10 CONTINUE
C
C - Partition the 1,2 components
C

DO 11 I=1,ISTATE
DO 11 J=1,KSTATE

XTL12(I,J) = XTILDE(I,J+ISTATE)
YTLl2(I,J) = YTILDE(I,J+ISTATE)
QTWOl2(I,J) = QTLTWO(I,J+ISTATE)
QINFl2(I,J) = QTLINF(I,J+ISTATE)

11 CONTINUE
C
C -Partition the components
C

DO 12 I=1,KST
DO 12 J=1,IST

XTL21(I,J) -XTILDE(I+ISTATE,J)

YTL21(I,J) =YTILDE(I+ISTATE,J)

QTWO21(I,J) =QTLTWO(I+ISTATE,J)

QINF21(I,J) =QTLINF(I+ISTATE,J)

12 CONTINUE
C
C -Partition the 2,2 components
C

DO 13 I-1,KSTATE
DO 13 J=1,KSTATE

XTL2(I,J) - XTILDE(I+ISTATE,J+ISTATE)
YTL2(I,J) = YTILDE(I+ISTATE,J+ISTATE)
QTW02(I,J) = QTLTWO(I+ISTATE,J+ISTATE)
QINF2(I,J) = QTLINF(I+ISTATE,J+ISTATE)

13 CONTINUE
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C
C - Find the derivative wrt AC
C

ICOUNT=0
DO 20 I=1,KSTATE

DO 20 J=1,KSTATE
ICOUNT=ICOUNT+1
SUM=0. 000
DO 25 K=1,ISTATE

SUM=SUM+XTL12 (K, I) *QTWO2l(J,K)
SUM=SUM+XTL21 CI,K) *QTWO12 (K,J)
SUM=SUM+YTLl2 (K, I) *QINF21(J,K)
SUM=SUM+YTL2l(I,K) *QINFl2 (K,J)

25 CONTINUE
DO 30 K=1,KSTATE

SUM=SUM+XTL2 (K, I) *QTWO2 (J,K)
SUM=SUM+XTL2 (I,K) *QTWO2(K,J)
SUM=SUM+YTL2(I,K) *QINF2(K,J)
SUM=SUM+YTL2 (K, I) *QINF2 (J,K)

30 CONTINUE
ACDER( I,J) =SUM

20 CONTINUE
C
C - Find the derivative wrt BC
C

DO 40 I=l,KSTATE
DO 40 J=1,NUMBY

ICOLINT=ICOUNT+l
SUM=0. 000
DO 45 K=1,ISTATE
DO 45 L=1,ISTATE

SUM=SUM+XTL12(K, I) *QTWO1(L,K)*CY(J,L)
SUM=SUM+XTL2l(I,K)*QTWO1(K,L)*CY(J,L)
SUM=SUM+YTL12 (K, I) *QINFl(L,K) *CY(J,L)
SUM=SUM+YTL21(I,K)*QINF1(K,L)*CY(J,L)

45 CONTINUE
DO 50 K=1,KSTATE
DO 50 L=1,ISTATE

SUM=SUM+XTL2(I,K)*QTW02l(K,L)*CY(J,L)
SUM=SUM+XTL2(K, I)*QTWO12(L,K)*CY(J,L)
SUM=SUM4YTL,2(I,K)*QINF23.(K,L)*CY(J,L)
SUM=SUM+YTL2(K,I)*QINF12(L,K)*CY(J,L)

50 CONTINUE
DO 60 K=1,ISTATE
DO 60 L=1,NUMBW

SUM=SUM+XTL12 (K, I) *BW(K,L) *DYW(J,L)
SUM=SUM+XTL21(I,K) *DYW(J,L)*BW(K,L)

60 CONTINUE
DO 70 K=1,ISTATE
DO 70 L=t,NUl4BD

SUM=SUM+YTL12(K,I)*BD(K,L)*DYD(J,L)
SUM=SUM+YTL21(I,K)*DYD(J,L)*BD(K,L)

70 CONTINUE
DO 80 K=1,KSTATE
DO 80 Lm1,NUMBY
DO 80 M=1,NUMBW

SUM=SUM+XTL2(I,K)*BC(K,L)*DYW(L,M)*DYW(J,M)
SUM=SUM+XTL2(K, I)*BC(K,L)*DYW(L,M)*DYW(J,M)

80 CONTINUE
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DO 90 K=1,KSTATE
DO 90 L=1,NUMBY
DO 90 M-1,NUMBD

SUM-SUM+YTL2 (I,K) *BC(K,L) *DYD(LM) *DYD(J,M)
SUM=SUM+YTL2(K,I)*BC(K,L)*DYD(L,M)*DYD(J,M)

90 CONTINUE
BCDER(I,J)=SUM

40 CONTINUE
C
C - Find the derivative wrt CC
C

DO 100 1=1,NUMBU
DO 100 J=1,KSTATE

I COUNT= ICOUNT+ 1
SUM=O. ODO
DO 110 K=l,ISTATE
DO 110 L=1,ISTATE

SUM=SUM+BU(K,I)*XTL1(L,K)*QTWO21(J,L)
SUM-SUM+BU(K, I)*XTL1(K,L)*QTWO12(L,J)
SUM=SUM+BU(K,I)*YTL1(L,K)*QINF21(J,L)
SUM=SUM+BU(K,I)*YTL1(K,L)*QINF12(L,J)

110 CONTINUE
DO 111 K=1,ISTATE
DO 111 L=1,KSTATE

SUM=SUM+BU(K, I) *XTL12 (K,L) *QTWO2 (L,J)
SUM=SUM+BU(K,I)*XTL21(L,K)*QTW02(J,L)
SUM=SUM+BU(K, I) *YTL12 (K,L) *QINF2 (L,J)
SUM=SUM+BU(K, I) *YTL21 (L,K) *QINF2 (J,L)

ill CONTINUE
DO 120 K=1,NUMBE
DO 120 L=1,ISTATE

DO 121 K=1,ISTATE
DO 121 N=1,ISTATE

SUM=nSUM+GAM21INV*
* DEU(K,I)*CE(K,L)*QINF1(L,M)*YTL1(M,N) *QINF12(N,J)

SUM=SUM+GAM21INV*
* DEU(K, I)*CE(K,L)*QINF1(M,L)*YTL1(N,M) *QINF21(J,N)

121 CONTINUE
DO 122 M=1,ISTATE
DO 122 N=1,KSTATE

SUM=SUM+GAM21INV*
* ~DEU(K, I) *CE(K,L) *QINF1(M,L) *YTL21(N,M)*QINF2 (J,N)

SUM=SUM+GAM21INV*
* ~DEU(K, I)*CE(K,L) *QINF1(L,M) *YTL12(M,N) *QINF2 (N,J)

122 CONTINUE
DO 123 M=1,KSTATE
DO 123 N=1,ISTATE

SUM-=SUM+GAM21INV*
* DEU(K,I)*CE(K,L)*QINF21(M,L) *YTL12 (N,M)*QINF21(J,N)

SUM-SUM+GAM21INV*
* ~DEU(K, I) *CE(K,L) *QINF12(L,M) *YTL21(M,N) *QINF12 (N,J)

123 CONTINUE
DO 124 M=1,KSTATE
DO 124 N=1,KSTATE

SUM= SUM+GAM21INV*
* ~DEU(K, I)*CE(K,L) *QINF12 (L,M)*YTL2 (M,N) *QINF2 (N,J)

SUM-S UM+GAM21INV*
* DEU(K, I) *CE(KL) *QINF21(M,L)*YTL2(N,M)*QINF2(J,N)

124 CONTINUE
120 CONTINUE
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DO 130 K=1,NUMBE
DO 130 L=1,NUMBU
DO 130 M=1,KSTATE

DO 131 N=1,ISTATE
DO 131 O=1,ISTATE

SUM=SUM+GAM21NV*DEU(K, I)*DEU(K,L)*
* CC(L,M) *QINF21 (M,N) *YTL1 (N,O) *QINF12 (O,J)

SUM=SUM+GAM21NV*DEU(K, I) *DEU(KL) *
* CC(L,M) *QINF12 (N,M) *YTL1 (O,N) *QINF21 (J,O)

131 CONTINUE
DO 132 N=1,ISTATE
DO 132 O=1,KSTATE

SUM=SUM+GAM21NV*DEU(K, I) *DEU(KL) *
* CC(L,M) *QINF21(M,N) *YTL12(N,O) *QINF2 (O,J)

SUM=SUM+GAM21NV*DEU(K, I)-*DEU(K,L) *
* CC(L,M)*QINF12 (N,M) *YTL21(O N) *QINF2 (J,O)

132 CONTINUE
DO 133 N=1,KSTATE
DO 133 0=1,ISTATE

SUM=SUM+GAM21NV*DEU(K, I) *DEU(K,L) *
* CC(L,M) *QINF2 (M,N) *YTL21(N,O) *QINF12 (O,J)

SUM=SUM+GAM21NV*DEU(K, I) *DEU(K,L) *
* CC(L,M) *QINF2 (N,M) *YTL12 (O,N) *QINF21(J,O)

133 CONTINUE
DO 134 N=1,KSTATE
DO 134 O=1,KSTATE

SUM=SUM+GAM21NV*DEU(K, I) *DEU(K,L) *
* CC(L,M) *QINF2 (M,N) *YTL2 (N,O) *QINF2 (O,J)

SUM=SUM+GAM21NV*DEU (K, I) *DEU (K,L) *
* CC(L,M) *QINF2 (N,M) *YTL2 (O,N) *QINF2 (J,O)

134 CONTINUE
130 CONTINUE

DO 140 K=1,NUMBZ
DO 140 L=1,ISTATE

SUM=SUM+(1.0D0-AMU)*DZU(K,I)*CZ(K,L)*QTWO12(L,J)
SUM=SUM+(1.0D0-AMU)*DZU(K,I)*CZ(K,L)*QTW021(J,L)

140 CONTINUE
DO 150 K=1,NUMBZ
DO 150 L=1,NUMBU
DO 150 M1I,KSTATE

SUI4=SUM+ (1. 0D-AMU)
*DZU(K,I)*DZU(K,L)*CC(L,M)-QTW02(J,M)

SUM=SUM ( 1. ODO-AMU)
*DZU(K,I)*DZU(K,L)*CC(L,M)*QTW02(M,J)

150 CONTINUE
DO 160 K=1,NUMBE
DO 160 L=1,ISTATE

SUM=SUM+AMU*DEU(K,I)*CE(K,L)*QINF12(L,,J)
SUM=SUM+AMU*DEU(K,I)*CE(K,L)*QINF21(J,L)

160 CONTINUE
DO 170 K=1,NUMBE
DO 170 L=1,NUMBU
DO 170 M=1,KSTATE

SUM=SUM+AMU*DEU(K, I) *DEU(J( L) *CC(L,M) *QINF2 (J,M)
SUM=SUM+AMU*DEU(K,I)*DEU(K,L)*CC(L,M)*QINF2(MJ)

170 CONTINUE
CCDER( I,J)=SUM

100 CONTINUE
RETURN
END
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THIS IS THE INPUT FILE FOR THE DIRECT METHOD
THE SISO MIX 8 STATE COMPENSATOR GAMMA 2.5

THE DIMENSIONS ISTATE,KSTATE,NU,NY,ND,NE,NW,NZ
3 8 1 1 1 1

THE PARAMETERS GAMMA AND MU (2D11.6)
0.250D+01 0.100D-00

THE TOLERANCES OF: 1-D SEARCH, CHECKSTOP (2DI1.6)
0.100D-03 0.100D-07

THE A MATRIX (8F8.4)
-0.39080E+00 -0.45650E+00 0.12657E+01
0.14453E+01 -0.10491E+01 -0.12077E+01

-0.12880E+00 0.67440E+00 0.10324E+01

THE BU MATRIX AS BU TRANSPOSE
-0.42750E+00 -0.44700E+00 -0.91720E+00

THE BD MATRIX AS BD TRANSPOSE
0.48800E-01 0.36080E+00 0.35640E+00

THE BW MATRIX AS BW TRANSPOSE
0.14077E+01 0.97230E+00 -0.16050E+01

THE CY MATRIX
-0.15567E+01 -0.19432E+01 -0.91400E-01

THE CE MATRIX
0.94200E+00 0.14400E-01 0.11870E+00

THE CZ MATRIX
-0.45000E-01 0.36060E+00 0.18972E+01

THE DYD MATRIX
0.51850E+00

THE DYW MATRIX
0.38990E+00

THE DEU MATRIX
0.13575E+01

THE DZU MATRIX
0.57810E+00

THE AC MATRIX (COLUMNS 1 - 4)
-0.42464048036D+01 -0.41938655996D+01 -0.20982704551D+01 0.3dS97033962D+01
0.19735258928D+00 -0.13358453000D+01 -0.48825701128D+01 0.4428003i9"+01

-0.67612139041D+01 -0.52273410600D+01 -0.62417707662D+01 0.84680779691D+01
0.93570728936D+01 0.84381238744D+01 0.76522396137D+01 -0.22312115910D+02
0.34126422373D+01 0.30774899656D+01 0.27908680859D+01 -0.69399026978D+01
0.40025571618D+01 0.36094699197D+01 0.32733021125D+01 -0.92716881072D+00
0.56863512443D+00 0.51279002246D+00 0.46503134842D+00 -0.20016352363D+02

-0.17570291239D+01 -0.158447300420+01 -0.14369031873D+01 0.91291800491D+01

THE AC MATRIX (COLUMNS 3 - 8)
0.36629700415D+01 -0.76222707011D+00 -0.27165890667D+01 -0.19927768328D+00
0.42023029687D+01 -0.87445680506D+00 -0.31165775779D+01 -0.22861917803D+00
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0.80364506611D+01 -0.16723042154D+01 -0.596011808820+01 -0.43720949159D+00
-0.139456353790+0Y2 0.51341155156D+01 0.84823843944D+01 -0.264004982050+01
-0.67197475912D+01 0.95634835361D+00 0.91188220025D+01 0.13756622861D+01
-0.35055010102D+01 0.11063088353D+01 0.93504776975D+01 0.41454433150D+01
-0.10543648466D+02 0.20770424268D+01 -0.11037259724D+02 -0.75826660426D+01
0.32035395034D+01 -0.34512450454D+01 0.31119395199D+01 0.31732538086D+01

THE BC MATRIX
-0. 16294768664D+01
0.18976447418D+00

-0.239236206360+01
0.367617729310+01
0.134074812120+01
0.15725120366D+01
0.223403574630+00

-0.690296061810+00

THE CC MATRIX (COLUMNS 1 - 4)
0.35961167081D+01 0.151752126340+01 0.85487098833D+01 -0.102486791500+02

THE CC MATRIX (COLUMNS 5 - 8)
-0.972629262900+01 0.202394326180+01 0.721336508790+01 0.52914248276D+00
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